
DEVELOPING A NEW ONLINE DISTRIBUTION METHOD FOR MULTIBEAM

DATA

by

James Muggah

B.Sc. Biology, St. Francis Xavier University, 2007

Advanced Diploma in GIS, NSCC’s Centre of Geographic Sciences, 2008

A Report Submitted in Partial Fulfillment of

the Requirements for the Degree of

Master of Engineering

In the Graduate Academic Unit of Geodesy and Geomatics Engineering

Supervisor: John E. Hughes Clarke, Ph.D., Geodesy and Geomatics Engineering

THE UNIVERSITY OF NEW BRUNSWICK

September, 2010

©James Muggah, 2010

ii

ABSTRACT

 Since 2003, all underway multibeam and sub-bottom data from the Canadian Coast Guard

Ship Amundsen has been posted online within approximately six months of the end of each

cruise. Two custom interfaces were developed to allow users to view the data. The first was

stripmaps, showing 25 by 5 kilometre mapsheets, with two different sun-illuminations for

bathymetry, backscatter, and properly referenced sub-bottom data. The second interface,

providing access to 15' latitude by 30' longitude mapsheets, was implemented in 2006. This

interface allowed users to download the bathymetric and backscatter data at 10 metre resolution.

While this interface matched the underlying data management scheme implemented at the

University of New Brunswick, the zoom and pan capability was at a fixed scale with limited

contextual data.

 In the past few years, with the introduction of web-based geographic information systems

(GIS) (e.g. Google Maps, Yahoo Maps, Bing Maps), there have been thousands of maps

published online. These online GIS programs are a suitable platform to display the seven years of

Amundsen coverage within the context of the GIS-served satellite imagery and allow the user to

freely browse all data in a familiar interface. The challenge, however, for serving up third party

data through these map engines is to efficiently cope with the multiple zoom levels and changing

resolutions.

 Custom tiling software was developed to take all the raw data from the seven years of

Amundsen (and others') multibeam coverage and convert it into multiple scale resolution images

suitable for interpretation by Google Maps. The images were stored in a pyramid structure

utilizing Google's map projection and uniquely named to reflect their georeferencing and

resolution. This image pyramid is then accessed by Google Maps according to the user's current

zoom level to optimize visualization. This multi-resolution data is served up on demand from the

University of New Brunswick for dynamic overlay on Google's satellite data. Point overlays were

developed to show each stripmap, adding to the functionality of the website by providing users

the full picture of the seafloor (topography and underlying sediments).

 This web interface allows any interested parties to easily view multibeam and sub-bottom data

from the Pacific Ocean through the Canadian Arctic Archipelago and into the Atlantic Ocean.

iii

The broad overview helps to understand regional trends and then focus on areas of interest at high

resolutions to see particular features. The web interface also provides a link to the 15' by 30'

mapsheet model with full source traceability and download capability.

iv

ACKNOWLEDGEMENTS

 I would like to thank Ian Church for his continued help with understanding the Ocean

Mapping Group’s code and developing the custom tile creation program. Also John

Hughes Clarke and Jonathan Beaudoin for their input.

 Members of the Ocean Mapping Group who collected and processed the data.

ArcticNet and the Amundsen provided a platform for data collection and research. Prime

funding for this research was from Imperial Oil Limited. The sponsors of the Chair in

Ocean Mapping: U.S. Geological Survey, Kongsberg Maritime, Route Survey, Canadian

Navy, Rijkswaterstaat. Additional funding from Geological Survey of Canada, NRCan,

Canadian Hydrographic Service, and DFO.

v

TABLE OF CONTENTS

ABSTRACT ... ii

ACKNOWLEDGEMENTS .. iv

TABLE OF CONTENTS ... v

LIST OF FIGURES ... vii

CHAPTER 1. INTRODUCTION .. 1

CHAPTER 2. BACKGROUND .. 5

2.1 CURRENT DISTRIBUTION METHOD .. 5

2.2 PROPOSED DISTRIBUTION METHOD .. 8

CHAPTER 3. METHODS ... 16

3.1 TYPES OF OVERLAYS ... 16

3.1.1 – Ground Overlay Method .. 17

3.1.2 – Tile Overlay Method .. 17

3.2 CREATION OF TILES ... 19

3.2.1 – Tile Bounds Calculations ... 20

3.2.2 – Creation of Tile Images.. 23

3.2.3 – Filling the Gap in the Tiles .. 25

3.2.4 – Collapsing of Tiles ... 27

3.3 POINT OVERLAYS ... 29

3.4 WEBSITE .. 31

CHAPTER 4. RESULTS ... 37

4.1 SPEED OF WEBSITE AND TILE CREATION ... 37

4.2 SIMPLIFICATIONS AND FUTURE DIRECTIONS .. 39

4.2.1 - Creation of Backscatter Tiles .. 40

4.2.2 - Creation of Tiles Using the 100 Ping Bounds .. 40

vi

4.2.3 - Implementing weigh_grid Options ... 41

4.2.4 - Developing an Update Procedure After Each Field Season 43

4.2.5 - Developing a New Colour Scale ... 43

4.2.6 - Collapsing r4 Files .. 44

4.2.7 - Download Option ... 45

4.2.8 - Using the Marker Manager for Stripmap Overlays .. 45

4.2.9 - Maintain and Update the Website ... 46

CHAPTER 5. CONCLUSIONS .. 47

BIBLIOGRAPHY .. 48

APPENDIX I – WEBSITE CODE .. 51

APPENDIX II – TILE CREATION CODE .. 60

APPENDIX III – FILL GAP CODE.. 64

APPENDIX IV – COLLAPSE CODE... 65

APPENDIX V – STRIPMAP CREATION CODE ... 68

vii

LIST OF FIGURES

Figure 2.1 - The ArcticNet Strip map website that was developed in 2003

to show multibeam and sub-bottom data..7

Figure 2.2 - The ArcticNet Basemap Series website that was developed in

2006 to show bathymetry and backscatter data..8

Figure 2.3 – The four main free web-GIS programs used by developers to

create custom maps online...12

Figure 2.4 – The three different background images used by Google Maps.

The top left is the Map View, the top right is the Terrain View, and

the bottom is the Satellite View...13

Figure 2.5 – The array of overlays, white tiles, Google’s satellite tiles, and

Ocean Mapping Group tiles as they appear in Google Maps. Google’s

Ocean imagery exists on the right (blue background), but disappears on the

left (white outlined tiles). The array of overlays was used to show the Ocean

Mapping Group’s tiles in the areas where Google did not have Ocean imagery..............15

Figure 3.1 - Tile creation for Google Maps, each tile is subsequently divided

into four new tiles..18

Figure 3.2 - The pyramid structure used by Google Maps which varies the

resolution of the image according to the zoom level and latitude.....................................19

Figure 3.3 – Defining the tile bounds used in the calculations discussed in

section 3.2.1...21

Figure 3.4 - The naming (column, row, and zoom level) system for the

Google Maps tiles (e.g. the top left tile name would be 0_0_1.png).................................24

Figure 3.5 – The one pixel gap created many vertical lines when the images

were tiled in Google Maps. These lines were fixed with the GM_fillGap

program..26

viii

Figure 3.6 – The tile overlay after the blank pixels were filled using the

GM_fillGap program...26

Figure 3.7 - The four tiles from the higher zoom level (left) are joined to

make the new tile in the lower zoom level (right)...28

Figure 3.8 - A sample of the xml file used to generate the stripmap point

overlays..29

Figure 3.9 - The stripmap image that pops-up when the point marker is

clicked. The pop-up also has a link to the stripmap website...30

Figure 3.10 - Generating the API key for the domain name http://omg.unb.ca...........31

Figure 3.11 - The API key generated by Google...31

Figure 3.12 - Standard map controls and custom map controls that were

added to customize the map...34

Figure 3.13 – Error handling for the link to download ArcticNet Basemaps.

In the left image, the user clicked on a valid ArcticNet Basemap. In the right

image, the user clicked on an area where there was no multibeam data

collected, therefore the link was not shown...36

http://omg.unb.ca/

1

CHAPTER 1. INTRODUCTION

 The Ocean Mapping Group at the University of New Brunswick has been collecting

data in the Arctic since 2003. Spending seven years in the Arctic, during which the

multibeam and sub-bottom profiler were continuously logging data, allowed the Ocean

Mapping Group to continually expand the multibeam and sub-bottom coverage with each

new field season. This has resulted in collecting over 102,000 km
2
 of bathymetric data, or

having roughly mapped 2 percent of the Canadian Arctic region. The Ocean Mapping

Group currently distributes all bathymetric and sub-bottom data online to industry and

science members. The primary focus of this project was to develop a new online

distribution method for multibeam and sub-bottom data collected in the Arctic.

 The Ocean Mapping Group had been working in the Canadian Arctic as a member of

ArcticNet’s Network of Centres of Excellence of Canada (NCE) program. ArcticNet is a

collection of Universities and research institutes, made up of students, researchers and

managers that work together with government, industry and northern communities to

study climate change in the coastal Canadian Arctic [ArcticNet, 2010]. It provides

funding, and the CCGS Amundsen as a platform to perform marine research in the

coastal Canadian Arctic. The ongoing mapping of the Amundsen has been divided into

both seabed science investigation and geomatics engineering research, which inspired

multiple thesis topics for members of the Ocean Mapping Group. The role of the Ocean

Mapping Group in ArcticNet is to “map the bottom topography and geological structure

2

of the Northwest Passage and other regions of the Canadian Archipelago as a first step

towards the management of increased intercontinental ship traffic and resource

exploration as ice conditions improve, and will contribute invaluable information to

assess the economic, sovereignty and security implications of an ice-free NW Passage.”

[Fortier, 2003].

 The Ocean Mapping Group’s mapping platforms in the Arctic have been the CCGS

Amundsen a 98 metre, 1200 class medium size icebreaker, CCGS Nahidik a 53 metre,

special navaids vessel and the CSL Heron a 10 metre survey launch, which was on loan

to the University from the Canadian Hydrographic Service. As discussed by Bartlett et al.

[2004], the Amundsen mapping instruments included:

 Kongsberg EM 302 (recently upgraded from an EM 300) 30 kHz multibeam

echosounder

 Knudsen 320R 3.5 kHz sub-bottom profiler

 C&C Technologies CNav differential GPS receiver

 Applanix POS/MV 320 inertial navigation system

 ODIM Brooke-Ocean (Rolls-Royce) MVP 300 moving vessel profiler

 Seabird 911 CTD

 Honeywell Barometer

 Applied Microsystems surface sound speed probe

3

The Heron mapping instruments included:

 Kongsberg EM 3002 multibeam echosounder

 Knudsen 320B 3.5 and 28 kHz sub-bottom profiler

 Knudsen 320B 200 kHz single beam and sidescan echosounders

 ODIM Brooke-Ocean (Rolls-Royce) MVP 30 moving vessel profiler

 C&C Technologies CNav differential GPS receiver

 CODA F-180 motion sensor

 AML surface sound speed probe

The Nahidik mapping instruments, as part of a portable multibeam system installation

which could be set-up on any capable vessel, included:

 A pole mounted Kongsberg EM 3002 300 kHz multibeam echosounder

 CODA F-180 motion sensor

 Seatex MRU-6

 AML surface sound speed probe

 C&C Technologies CNav differential GPS receiver

 This project focuses on the distribution of multibeam (bathymetry and backscatter)

and sub-bottom (seismic) data, collected in the Arctic. It should also be noted that most

of the above systems on the mapping vessels are capable of logging raw data. The raw

data was stored on the Ocean Mapping Group’s servers and with enough interest, the data

could be made available online. This data included: CTD (about the salinity,

4

temperature, and density of the water for oceanographic purposes), water column

backscatter, POS Pac format INS data, atmospheric pressure and GPS pseudo-ranges.

5

CHAPTER 2. BACKGROUND

 The collection of multibeam and sub-bottom data in the Arctic has driven a strong

demand for viewing and downloading the data online. The current users required this data

for navigation, engineering, natural resources, and benthic habitat applications. Providing

multibeam and sub-bottom data to the users, other than least depths, involved processing

to create a product and a method to distribute each product. This distribution was

beneficial to the users in terms of avoiding redundant data collection and prioritizing

areas which should be re-mapped [Beaudoin et al., 2008].

2.1 CURRENT DISTRIBUTION METHOD

 The Ocean Mapping Group had two methods in place for distributing the data

collected in the Arctic: Arctic Stripmaps and the ArcticNet Basemap Series. Both of

these distribution methods served their intended purpose; however, with evolving

technology, improvements to these distribution methods could be made.

 In 2003, the Ocean Mapping Group was collecting multibeam and sub-bottom data

during opportunistic transits and short, dedicated site surveys. The data collected during

the first few Arctic field seasons was sparse, causing the data distribution method for

multibeam and sub-bottom data to focus on corridors of data. As discussed by Beaudoin

6

et al. [2008], in 2003 a Stripmap website (see figure 2.1) was developed which contained

two different sun-illuminated bathymetry (across track and along track) images, a

backscatter image and a correspondingly georeferenced sub-bottom image (2-

dimensional seismic plot). To compliment these images, overview and location maps

were also added, providing the necessary contextual information.

 The stripmap website provided users with the full picture of the sea floor (bottom

topography and its underlying sediment layers) in 25 by 5 kilometre mapsheets. For each

year, users could walk though each 25 by 5 km stripmap, viewing the multibeam and sub-

bottom images together, as if they were following the Amundsen ship track. While the

website was well received by ArcticNet users for providing all the important information,

improvements in web-GIS programs have provided tools to serve up the data with more

detailed contextual information.

 In 2006, after four years of building up coverage in the Arctic, the multibeam

distribution method was shifted to areas of coverage. As discussed by Beaudoin et al.

[2008], in 2006 the ArcticNet Basemap Series (see figure 2.2) was developed which

contained a set of tiled bathymetry and backscatter images. Each basemap covered 15’ of

latitude and 30’ of longitude, at a resolution of 10 metres and in the Lambert conformal

conic projection. These basemaps also contained an overview and location map to help

place the data in geographic context.

7

 The basemap website was a custom design, allowing users to view and download (as

ESRI grid files) all of the bathymetry and backscatter information collected in the Arctic

since 2003. For those concerned with data management and quality, it provided full

source traceability, including details on all lines of all years that contributed to each

mapsheet. Once again, new developments in web-GIS programs presented opportunities

to improve upon this method and serve up multi-resolution imagery seamlessly, with

more detailed contextual information.

Figure 2.1 - The ArcticNet Stripmap website that was developed in 2003 to show

multibeam and sub-bottom data.

8

Figure 2.2 - The ArcticNet Basemap Series website that was developed in 2006 to show

bathymetry and backscatter data.

2.2 PROPOSED DISTRIBUTION METHOD

 The stripmap and basemap websites provided the outline for the development of the

new distribution method. The new distribution method used a web-GIS interface to

display the Ocean Mapping Group’s Arctic dataset. The web-GIS interface allowed the

multibeam imagery to be served up seamlessly, on top of high resolution satellite images,

aerial photographs and Google’s ocean bathymetry. It also integrated the stripmap

website in the form of point overlays. The reasons behind choosing a web-GIS interface

for the new data distribution model will be discussed in this section.

9

 Geographic information systems (GIS) have been around since the 1960s, although

they were typically expensive, difficult to use, and proprietary, which limited their use.

A general definition of a GIS is a “computer systems for capturing, storing, querying,

analyzing, and displaying geospatial data.” [Chang, 2008]. Geospatial data refers to the

location and characteristics of spatial features. GIS systems have the ability to display the

geographic area, at a user specified scale, viewed from above and also relate this

geographic data with other information types [Geller, 2007]. Relating different sources of

geographic data makes GIS a suitable platform to display and distribute the Ocean

Mapping Group’s Arctic dataset.

 Since 2004, there has been an increase in the development of free web-based

geographic information systems, with Google Maps, Yahoo Maps, Bing Maps and

MapQuest being the most common [Geller, 2007]. Developers have taken advantage of

this and published hundreds of thousands of maps online [Google Geo Blog, 2010]. A

few examples of these maps with bathymetry overlaid have been published by the

University of Hawaii at Manoa [Hawaii Mapping Research Group, 2009] and in the

listings found on the Magic Instinct Software website [2010]. These web-based systems

have a small set of GIS tools, however many third-party “mash-ups” have been related to

these GIS tools, allowing developers to add more functionality to their maps [Elias et al.,

2008]. A mash-up is mixing two or more services from websites or web programs to

create a new service. Developers and companies can use these systems to display their

data to anyone with access to the internet and an internet browser.

10

 The four main competitors (Google Maps, Yahoo Maps, Bing Maps and MapQuest)

all have similar mash-ups implemented through JavaScript, and similar user interfaces

(see figure 2.3). Google Maps was chosen as the web-based GIS system for this project

because it had a popular Application Programming Interface (API), suitable satellite

imagery and Google Ocean imagery. Google Maps was also a familiar interface to most

internet users. Using a familiar interface would help users without GIS experience, to

easily view and use the website.

 The GIS tools available in the Google Maps API allowed developers to add points,

lines, polygons and custom overlays to the map, as well as geocode addresses [Google

Maps v2, 2010]. Developers could add standard Google controls and create custom

controls for the map, customizing the appearance of the map for the users.

 The Google Maps interface used the Mercator projection and had three different

layers: map, satellite and terrain view (see figure 2.4). Each layer provides the user with

different contextual information.

 The map layer showed the terrestrial surface of the Earth as a white background, the

aquatic surface as a blue background and National Parks as a green background. The

map layer also labelled the names of Countries, Cities, Towns, Roads, Rivers, Oceans,

etc... The shoreline from the map layer had a coarser resolution than the satellite layer.

11

 The terrain layer showed a relief map of the terrain, providing users with elevations

and general ground cover type. This layer also labelled the names of Countries, Cities,

Towns, Roads, Rivers, Oceans, etc... The shoreline from the terrain layer was the same as

the map layer; a coarser resolution than the satellite layer.

 The satellite layer combined high resolution aerial photography and satellite imagery

to produce detailed images of the Earth. This satellite layer had varying resolutions of

imagery depending on the viewing location. Urban areas were typically covered with

higher resolution imagery and rural or unpopulated areas were typically covered with

lower resolution imagery. The satellite data was further complimented with Google

ocean imagery, which showed imagery of the ocean basins, at low resolution (~10 km

[Sandwell and Smith, 2010]). The ocean imagery was mainly created from the sea

surface undulations, caused by sub-seabed gravity differences, which were recorded by

satellite altimetry [Stewart, 1985]. Recently, Google has added new higher resolution

ocean imagery in selected areas. This new imagery was from ship echosounders,

collected by many organizations, including the Center for Coastal and Ocean Mapping –

Joint Hydrographic Center [Google LatLong Blog, 2008]. This view also had a toggle

box to show or hide labels with the names of Countries, Cities, Roads, Rivers, Oceans,

etc...

12

Figure 2.3 – The four main free web-GIS programs used by developers to create custom

maps online.

13

Figure 2.4 – The three different background images used by Google Maps. The top left is

the Map View, the top right is the Terrain View, and the bottom is the Satellite View.

 Google Maps was a suitable web-GIS platform, however it was still not the perfect

solution to online data distribution. One of the disadvantages to using Google Maps was

the use of the Mercator projection. The Mercator projection was a standard map

projection for nautical charting because it presented lines of a constant bearing as straight

lines [Pearson, 1990]. The disadvantage of Google Maps Mercator Projection was that it

did not show any imagery or overlays of the Polar Regions. The reason being that a

Mercator projection distorted the imagery as the latitude increased or decreased away

from the Equator. As the imagery approached the poles, the distortion became infinite,

which was why Greenland appeared to be larger than Africa. The bounds for Google’s

14

Mercator Map were set at 85.011° N, 180° W, 85.011°S, and 180°E. The reason Google’s

map does not go above 85.011°N or below 85.011°S was because Google wanted to

create a square map, which simplified the tiling scheme (discussed further in section 3.2).

Not showing the poles was not a concern because all the data collected in the Arctic was

below 80 degrees north.

 Another disadvantage to using Google Maps was the high resolution satellite imagery

and aerial photography covered mainly the urban areas (sparse in the Arctic). High

resolution satellite imagery and aerial photography was not commercially available in all

areas of the world and it was expensive to purchase. This was not a major concern

because the low resolution satellite imagery and aerial photography was comparable to

most of the shorelines on electronic charts in the Arctic. Google’s imagery was also being

updated more frequently as new imagery became available [Google Blog, 2010].

 The last disadvantage was Google’s ocean imagery was only available at lower

resolutions and zoom levels. In areas away from the coast and at higher zoom levels

(>10), the ocean imagery disappeared and was replaced with a grey background. This

caused a few problems for the overlay of Ocean Mapping Group tiles, as they would not

be displayed over areas with no ocean imagery. Displaying the Ocean Mapping Group

tiles in these areas involved creating an array of overlays. The base layer was made up of

white tiles. On top of the base layer was Google’s satellite tiles, and the top most layer

was the Ocean Mapping Group’s custom tiles (see figure 2.5).

15

Figure 2.5 – The array of overlays, white tiles, Google’s satellite tiles, and Ocean

Mapping Group tiles as they appear in Google Maps. Google’s Ocean imagery exists on

the right (blue background), but disappears on the left (white outlined tiles). The array of

overlays was used to show the Ocean Mapping Group’s tiles in the areas where Google

did not have Ocean imagery.

16

CHAPTER 3. METHODS

 To fulfil the objectives outlined in this project, the Ocean Mapping Group’s data

needed to be overlaid on a contextual background image. Users could pan and zoom to

any area or resolution they choose while still having the ability to download the data in

the 15’ latitude by 30’ longitude, 10 metre resolution data, thereby preserving the source

traceability.

3.1 TYPES OF OVERLAYS

 The scale of the Ocean Mapping Group’s dataset meant that an efficient method must

be used to create, store, and display the data online. Google Maps provided two types of

custom overlays: ground overlays and tile overlays. While both types of overlays

displayed images on top of Google’s background layers, they were very different in how

they were implemented. The main difference between the tile overlay and the ground

overlay was the tile overlay used a fixed image size, with varying resolutions, for each

zoom level. The ground overlay used a single image of any size, with a fixed resolution

for all zoom levels. These two overlays are discussed in more detail here.

17

3.1.1 – Ground Overlay Method

 The ground overlay method was suitable for a small dataset covering a small area. It

was relatively simple to implement, where developers only needed to have an image,

with a transparent background, and the Southwest and Northeast latitude / longitude

coordinates for georeferencing. This overlay displayed the image at the original

resolution, regardless of zoom level.

3.1.2 – Tile Overlay Method

 The tile overlay method was an efficient way to display large datasets, however, it was

more complex in its design and implementation than the ground overlay method. The tile

overlay method involved creating a 256 by 256 pixel image, for each zoom level,

everywhere multibeam data was collected. The number of potential tiles that needed to

be created increased with the zoom level. For each subsequent zoom level, the image

was divided into four tiles (see figure 3.1), thus giving the equation for the number of

tiles necessary to cover the world, for that particular zoom level, as:

Number of Tiles = 4
n
 (where n = zoom level).

Google only required tiles to be created where there was multibeam data, rather than

creating blank tiles for most of the world. This drastically reduced the space necessary to

store the tiles (~20 KB each). For example, the latest generation of tiles for all arctic data

18

collected between 2003 and 2009, produced just over 240,000 tiles for zoom level 14.

Whereas, the amount of tiles necessary to cover the world at zoom level 14 was just over

268,000,000.

Figure 3.1 - Tile creation for Google Maps, each tile is subsequently divided into four

new tiles. [Google Maps v2, 2010]

 Tiling the data drastically speeds up the load time of the online map because it only

loaded the tiles, at an appropriate resolution, within the user’s map bounds. Depending

on the user’s screen resolution, this usually translated to approximately 8 (256 x 256

pixel) tiles for a typical map window size of 500 x 800 pixels.

 The tiles used a pyramid structure (see figure 3.2) that varied the resolution of the tile

according to the zoom level and latitude. At the lowest zoom level (zoom level 0), where

the whole world was visible, the resolution of the multibeam data could be low because

of the map scale. At the highest zoom level (zoom level 19), where details such as

vehicles and houses were visible, the resolution of the multibeam data needed to be high

so the overlay would not become pixelated.

19

Figure 3.2 - The pyramid structure used by Google Maps which varies the resolution of

the image according to the zoom level and latitude. [Pridal, 2008]

3.2 CREATION OF TILES

 To create the tiles for overlay on Google Maps, the Ocean Mapping Group developed

a custom software program. The program used the navigation tracks from the CCGS

Amundsen, the CSL Heron and other vessels to determine which tiles the navigation

track intersected at the highest zoom level (zoom level 14). Using the navigation tracks to

determine which tiles needed to be created avoided creating unnecessary tiles, speeding

up the program and saving disk space. At the highest zoom level, and in deep water

(>800 metres), it was possible for the swath from the multibeam file to intersect up to

20

five tiles. To ensure there were no gaps in the data, 24 additional tiles (in an expanding

square) were created around each navigation track tile. For each tile that needed to be

created, a list of the cleaned multibeam files that contributed to that tile was also created.

3.2.1 – Tile Bounds Calculations

 Google Maps requires each tile to have a Spherical Mercator projection with a fixed

size of 256 pixels by 256 pixels. In order to create each tile, the latitude / longitude

bounds of each 256 x 256 pixel tile, needed to be calculated. This was done as follows:

 The Earth is divided into 360° of longitude and 180° of latitude. This represents a

sphere, where the circumference at the equator is represented by 2π multiplied by the

radius of the Earth at the Equator (R = 6378137). Since a Mercator map did not show the

poles, Google simplified their map by cutting off the poles to make the map square. To

create the square map, Google used the circumference at the equator of 2πR to represent

360° of longitude and the total range of latitude. To calculate the absolute upper latitude

of the Google map, divide 2πR by 2 to give πR. Multiplying π by R equals 20037508.34

metres. Converting 20037508.34 metres to decimal degrees from the Spherical Mercator

projection formula found in Maling [1973, p.153]:

21

rearranging to solve for φ:

 φ = 85.0511°

This meant that the top latitude of Google’s map was 85.0511°.

 Figure 3.3 defines the terms used in the next calculations. The terms are: upper

latitude tile bound, lower latitude tile bound, left longitude tile bound, and right longitude

tile bound.

Figure 3.3 – Defining the tile bounds used in the calculations discussed in section 3.2.1.

[Google Maps v2, 2010]

 To calculate the lower latitude bound of the north most tile, the pole to pole latitude

must be known, 2πR for Spherical Mercator, as well as the zoom level of the tile. The

formula for calculating the lower bound:

 Lower latitude tile bound = - 2πR zoom level + (upper latitude tile bound in metres)

22

The lower latitude tile bound was then converted to decimal degrees using the Spherical

Mercator formula:

The upper latitude was then set to the lower latitude bound for the calculation of the next

tile. The latitude calculations can be done specifically for each tile if the row information

was known.

The Latitude bounds were then converted from spherical metres to decimal degrees.

 The projection latitude was calculated by adding the Upper latitude bound to the lower

latitude bound and then dividing by two. The projection latitude was used only for the

make_blank program, which created a georeferenced blank mapsheet with the least

distortion at the projection latitude.

The left longitude tile bound was first set to the most Westerly longitude of the Mercator

projection (-180°). To calculate the right longitude tile bound, the circumference of the

Earth must be known, 360° of longitude, as well as the zoom level of the tile. The

formula for calculating the right bound:

360° / 2 zoom level + left longitude tile bound

23

The left longitude tile bound was then set to the right longitude bound for the calculation

of the next tile. The latitude calculations can be done specifically for each tile if the

column information was known.

3.2.2 – Creation of Tile Images

 Google Maps required images for overlay in the map. The first step was to create a

blank mapsheet in the spherical Mercator projection, using the latitude / longitude

bounds, projection latitude (calculated above) and a custom resolution. The resolution

for each tile was determined using the following formula:

 s

*where res luti n at Equat r πR 5 pixels per tile

*where R = 6378137

These mapsheets were created for each relevant (filled) tile, at the highest zoom level

selected. The blank mapsheets were named according to the row, column and zoom level

(see figure 3.4). They were then populated with multibeam soundings by assigning

24

floating point values to grid cells, using a weighting function (weigh_grid, from the

Ocean Mapping Group Swathed software toolkit).

Figure 3.4 - The naming (column, row, and zoom level) system for the Google Maps tiles

(e.g. the top left tile name would be 0_0_1.png). [Google Maps v2, 2010]

 After the multibeam data was gridded into the tiles, each tile was sun-illuminated

(addSUN, from the Ocean Mapping Group Swathed software toolkit) to give the

multibeam data a 3-dimensional appearance. The data was then colour shaded according

to depth using the Ocean Mapping Group’s custom bathymetric colour scheme. The

colour scheme was deliberately chosen to be the same throughout the entire Arctic

dataset, with colour coded depths ranging from zero metres to 1000 metres (everything

below 1000 metres was a constant colour). The colour coded and sun shaded tiles were

mixed together to produce an image (mix_ci, from the Ocean Mapping Group Swathed

software toolkit). The new image was converted to a PNG image, which was supported

by Google, with a transparent background using the “imagemagick” program.

Imagemagick was a free software program that could read, write and convert images in a

variety of image formats [ImageMagick Studio, 1999].

25

3.2.3 – Filling the Gap in the Tiles

 The programs used to create the multibeam tiles were not able to fill one pixel on the

right side of each tile. This was due to the Ocean Mapping Group’s custom program

“addSUN”. During the sun-illumination, the program’s default settings used the pixel

values from above and to the right to assign a value to the current pixel. In the last

column of the image, there was no pixel to the right, so no values were assigned to the

last pixel. When all the images were tiled together in Google Maps, many vertical lines,

on the right side of each tile, were visible in the map (see figure 3.5).

 To fill the pixels in the last column of the images, a new program called

“GM_fillGap” was created. This program was used after the sun-illumination and colour

shading to patch the value from the pixel to the left, into the blank pixel (see figure 3.6).

This method was not the perfect fix, because the sun-illumination in the last two pixels

was the same.

26

Figure 3.5 – The one pixel gap created many vertical lines when the images were tiled in

Google Maps. These lines were fixed with the GM_fillGap program.

Figure 3.6 – The tile overlay after the blank pixels were filled using the GM_fillGap

program.

27

3.2.4 – Collapsing of Tiles

 Following the creation of the highest zoom level (level 14), the tile images were

collapsed to create the lower resolution zoom levels (zoom level 13, 12, 11... 3). For each

lower zoom level (e.g. level 13), four tiles in the original zoom level (level 14) were used

to generate one tile in level 13. The collapsing was done using the name (row, column

and zoom level) of each tile in zoom level 14 to determine the name of the tile in level

13. This was done using the following calculations:

 Level 13 column = (Level 14 column + 1 / 2 zoom level 14) * 2 zoom level 14 -1

If the level 14 column was odd (before adding 1), add 0.5 to the level 13 column and then

subtract 1. If the level 14 column was even, subtract 1 from the level 13 column.

 Level 13 row = (Level 14 row + 1 / 2 zoom level 14) * 2 zoom level 14 -1

If the level 14 row was odd, add 0.5 to the level 13 column and then subtract 1. If the

level 14 row was even, subtract 1 from the level 13 row.

For each tile in level 13, the order (top right, top left, bottom right and bottom left) of the

four tiles in the level 14 were calculated using the following steps:

 Top left tile name = level 13 tile column * 2, level 13 tile row * 2, tile zoom level 13 + 1

 Top right tile name = top left tile column + 1, top left tile row, zoom level + 1

 Bottom left tile name = top left tile column, top left tile row + 1, zoom level + 1

 Bottom right tile name = top left tile column +1, top left tile row +1, zoom level +1

28

 After the order of the four tiles in level 14 was determined, the program

“imagemagick” was used to join the four images according to their order (see figure 3.7).

If there was a tile that did not exist in the previous zoom level, a blank, transparent 256 x

256 pixel tile was used in its place. If none of the four tiles existed, the new tile was

skipped. The program created a new 512 x 512 pixel image which was then compressed

to a 256 x 256 pixel image. This same method was used to collapse each subsequent

level; level 13 was collapsed to level 12, and so on until level 3 was achieved.

Figure 3.7 - The four tiles from the higher zoom level (left) are joined to make the new

tile in the lower zoom level (right). [Google Maps v2, 2010]

29

3.3 POINT OVERLAYS

 The point overlays in this project were created from the stripmap website. Stripmaps

gave users the full picture of the seafloor by displaying information about the bottom

topography, seafloor sediments, and the sub-seafloor sediments. The methods used to

generate the point overlays are discussed here.

 The stripmap point overlays were created using an xml file. The xml file had custom

tags, generated by parsing the header file and path name for each stripmap, and placing

the correct values into the corresponding stripmap marker tag. The custom tag values

contained the latitude and longitude of the centre of each 25 x 5 km mapsheet, the year

the stripmap data was collected, a link to the stripmap image, a link to the stripmap

website, the name of the mapsheet and the colour of the custom icon (see figure 3.8).

Figure 3.8 - A sample of the xml file used to generate the stripmap point overlays.

 The website added the point overlays to Google Maps by parsing the xml file. The

values from the xml file were used to display the points according to the latitude /

longitude in the xml file. The other xml tag values were used to create the colour coded

markers, and populate the balloon pop-up.

30

 A toggle box was created on the website, allowing users to toggle the stripmap

markers on and off. When the stripmaps were toggled on, users could click on the point

marker and a balloon would pop-up showing the name of the stripmap, the stripmap

image and a link to the stripmap website (see figure 3.9).

Figure 3.9 - The stripmap image that pops-up when the point marker is clicked. The pop-

up also has a link to the stripmap website.

31

3.4 WEBSITE

 The creation of the website with Google Maps used Google’s Application

Programming Interface (API). The API is an interface that links Google’s code to the

web programming language Javascript. In order to add Google Maps to a website, an API

key was needed to register the website with Google. The API key can be obtained by

registering and opening a Google account. There were an unlimited number of API keys

a Google account could utilize. When registering the API key, it was recommended to

sign up the domain name, so all subdomains and directories could use the same API key

[Google Maps v2, 2010]. For this project, the domain name: http://omg.unb.ca was used to

generate the API key (see figure 3.10 & 3.11).

Figure 3.10 - Generating the API key for the domain name http://omg.unb.ca.

Figure 3.11 - The API key generated by Google.

http://omg.unb.ca/
http://omg.unb.ca/

32

 The website was created using html and Javascript languages. Google’s API is written

in Javascript which can be embedded into the html code used to create the website. On

Google’s website [Google Maps v2, 2010] they state there was no fee for embedding

Google Maps into a website as long as the website was freely available to the end user.

There was also no limit to the number of website views per day.

 The website with Google Maps compatible seafloor imagery was hosted on the Ocean

Mapping Group’s web-server at the University of New Brunswick. When the website

was loaded onto a user’s computer, satellite imagery tiles were loaded from Google’s

server to the website and the multibeam tiles, stored on the Ocean Mapping Group’s web-

server, were served up on top of Google’s satellite imagery.

 Google Maps allowed the embedded map to be customized. In this project, the map

properties (map center and zoom level) were set to Centre on Northern Canada, at zoom

level three, when the website was loaded. This allowed any users on the website for the

first time to see the extent of the Ocean Mapping Group’s dataset. The satellite map type

was chosen as the background imagery because Google’s new low resolution bathymetry

provided the best shoreline resolution.

 To customize the appearance of the map, a combination of standard Google Map

controls and custom controls were added (see figure 3.12). The standard Google controls

helped keep the map familiar to most users.

33

The standard Google controls were:

 Zoom and pan controls

 Map type control

 Scale bar

 Search bar

 Overview map

 Copyright information.

The following custom controls were added:

 Legend for the bathymetry (colour bar)

 Opacity control to make the satellite data transparent (to see the tile boundaries

for debugging)

 Checkbox to toggle the bathymetry overlay on and off

 Map properties: the Southwest and Northeast bounds of the map, the zoom level

and the centre of the map

 The mouse: position on the map in latitude / longitude, position in pixels, the

name of the tile the mouse is in, and the tile resolution

 Left click anywhere on the map for a balloon pop-up with a link to the

corresponding ArcticNet Basemap, allowing users to download the multibeam

grid files

 Checkbox to toggle the strip maps on and off

34

Figure 3.12 - Standard map controls and custom map controls that were added to

customize the map.

 This website was designed to allow users to continue to download the multibeam data

in ESRI grid format. This was accomplished by linking the website to the ArcticNet

Basemap series, which allowed users to download the 15’ latitude by 30’ longitude

mapsheets. This link was generated when the user left clicked anywhere on the map. The

location of the mouse at the time of the click was passed to a function that calculated

which ArcticNet basemap the mouse was in. The mouse location was in decimal degree

format with brackets surrounding the argument and a comma separating the values. The

function first removed the brackets and then converted the values from decimal degrees

to degrees and minutes. The function then calculated which 15 minute increment of

35

latitude and 30 minute increment of longitude the mouse was in. The latitude / longitude

argument was then converted to a web link for the corresponding ArcticNet basemap.

 The web link generated from a left click could be for any area in the world, so a

function to handle invalid links was created. To determine if there was a valid basemap

where the user clicked, an xmlHTTP head request was sent in Javascript to determine if

the basemap webpage existed. This request returned a 200 status code if the website

existed or another status code if it did not, for example a 404 if the webpage was not

found [Wikipedia, 2010]. In areas where the Ocean Mapping Group had not collected

multibeam data, or if the user clicked on the terrain, no link to download the data was

shown (see figure 3.13). The xmlHTTP head request required “www” in the URL of the

Google Maps website to work properly. To ensure that it was always present, the Ocean

Mapping Group’s server was configured to redirect the URL http://omg.unb.ca to

http://www.omg.unb.ca.

http://omg.unb.ca/
http://www.omg.unb.ca/

36

Figure 3.13 – Error handling for the link to download ArcticNet Basemaps. In the left

image, the user clicked on a valid ArcticNet Basemap. In the right image, the user clicked

on an area where there was no multibeam data collected, therefore the link was not

shown.

37

CHAPTER 4. RESULTS

 This section describes how effective each method was for creating and displaying the

multibeam overlays. It proceeds to discuss some of the simplifications used to create the

tiles and point overlays. Finally, there is a discussion about some features and methods

which will be implemented in the future.

4.1 SPEED OF WEBSITE AND TILE CREATION

 Throughout this project there have been several iterations of how to overlay the

multibeam and sub-bottom data in Google Maps. The first method used to overlay

multibeam data was the ground overlay method. As was discussed in section 3.1.1, the

ground overlay method was not suitable for large datasets. This was proven after a quick

test of a small multibeam dataset around Bylot Island, where the webpage load time for

approximately 50 images, was between 10 and 15 seconds. The single resolution image,

regardless of zoom level, also increased the load time of the website because it was not

necessary to have high resolution images at low zoom levels.

 The second method used was the tile overlay method (see section 3.1.2). This method

had several iterations for creating the tiles. The first method involved the use of

Microsoft’s MapCruncher for Virtual Earth [Elson et al., 2007]. Creating the tiles with

MapCruncher proved that the tile overlay method was suitable to overlay the large

38

multibeam dataset because there was no delay loading the tiles into the website.

MapCruncher’s tile overlay had a few areas where the tiles did not line up correctly. This

was determined to be a projection problem between the Ocean Mapping Group’s format

and the format used by MapCruncher. The solution was to create a custom Ocean

Mapping Group program to create the tiles.

 The custom program, developed by the Ocean Mapping Group, to create the tiles also

had several iterations. The first method was to create all tiles between 81° N, 42° N, 179°

W and 41° W. This method gridded each tile within the bounds, for each zoom level

(level 3 to 13). After gridding each tile, using all multibeam lines for each tile, the

program would delete all the empty tiles to save disk space. This method was not very

efficient as the tiles that were created covered all of Canada and part of the United States,

land mass. Using a list of all multibeam lines, slowed down the gridding program because

it had to search through each line to see which lines intersected each tile. The first update

to this method, checked to see if the tile in the previous zoom level existed, before it

would grid the data. When gridding each new tile, the program used a list of multibeam

lines that intersected the previous zoom level tile, rather than all multibeam lines. This

method was also slow in producing the tiles; the time it took to create levels 3-12 was

approximately 2 weeks, compared to MapCruncher which created levels 3-11 in

approximately 1.5 days.

39

 The next method used to create the tiles was discussed in section 3.2. This method

gridded multibeam data at the highest zoom level first, and then collapsed each

subsequent level without the need to re-grid the data. This method was faster, taking

approximately 5 days to grid the highest level (level 14) and approximately 1.5 days to

collapse all other zoom levels (13-3). While this method was faster than all other methods

used thus far, it still had room for improvement (discussed in next section).

4.2 SIMPLIFICATIONS AND FUTURE DIRECTIONS

The fundamental objectives of creating a new online distribution method for the Ocean

Mapping Group’s data, has been completed. However, there are a few functions that will

improve the functionality of the website for the end user. These are as follows:

- Creation of backscatter tiles

- Creation of tiles using the 100 ping bounds

- Implementing weigh_grid options

- Developing a new colour scale

- Collapsing r4 files

- Developing an update procedure after each field season

- Using the marker manager for stripmap overlays

- Maintain and update the website

- Download option

40

 4.2.1 - Creation of Backscatter Tiles

 The current online distribution method, ArcticNet Basemaps, provided multibeam

bathymetry and backscatter images to users. Currently, this project only provides the

multibeam bathymetry. Adding the backscatter tiles to Google Maps would help users

interpret the quality of the bathymetry and provide some rough seafloor classification.

Creating the backscatter tiles should be implemented without any serious issues because

all the necessary calculations have been completed for the bathymetry.

 4.2.2 - Creation of Tiles Using the 100 Ping Bounds

 The process of creating 24 tiles around each tile with the navigation track was a

simple solution to the problem of having a wider swath than the single tile created from

the navigation track. This solution should be replaced in future iterations by using the 100

ping bounds of each merged file. The 100 ping bounds are the latitude and longitude

bounds in 100 ping increments of the merged file. This would allow for dynamic creation

of the tiles, regardless of zoom level, saving time and space by not creating empty tiles.

41

 4.2.3 - Implementing weigh_grid Options

 Gridding the multibeam data into the tiles was done without any specific options. The

specific options give higher quality surveys and newer echosounders stronger weights

when the data was gridded into each tile. Two different options which should be used in

the gridding process are discussed here.

 One option was to use a custom weighting function, which was a linear scale by beam

number that had the strongest weights at nadir, and tapered down to the weakest weights

for the outer beams (This function is built into the weigh_grid software from the Ocean

Mapping Group Swathed software toolkit). When running a survey with 200 percent

coverage (covering the seafloor twice), the nadir beams from one line were weighted

stronger than the outer beams of the adjacent lines. Since the nadir beams typically had

less noise than the outer beams, a more accurate representation of the sea floor was

achieved.

 The beamwidth option in weigh_grid defined the size of the beam footprint and also

helped with weighting each beam. Weighting each beam meant the centre of each beam

had more weight than the surrounding beam footprint. This created a smoother transition

between each beam, with different values populating each pixel (if the beam footprint

was larger than the pixel).

42

 There should also be a method in place to cope with different sonars, and different

data qualities (ie. in large sea state, ice or the sonars ability to perform in a certain water

depth range). Having different weigh_grid commands for different sonars would be the

simpler of the two methods to implement. This method involved using different custom

weights, for each sonar, in the weigh_grid command. The different float file outputs

from weigh_grid could then be combined, treating all sonars equally, or weighting each

sonar according to its quality.

 Coping with different data qualities, in large seas or ice would have to be a more

manual procedure, perhaps looking at the magnitude of the roll and pitch for the specific

weighting command. The large amount of data collected throughout the seven years in

the arctic, with seemingly random areas of poor quality soundings, makes it more

difficult to perfect these weighting commands.

 To avoid a lengthy regridding process, patchArea from the Ocean Mapping Group

Swathed software toolkit could be used. The patchArea program removes the necessity to

regrid each individual mapsheet, instead it resamples existing grids, inheriting all the

weigh_grid options already built into the existing ArcticNet 15’x30’ basemaps. This

could be done for both bathymetry and backscatter.

43

 4.2.4 - Developing an Update Procedure After Each Field Season

 The ArcticNet Basemap series had a similar problem when it came to updating after

each field season. The basemap series currently creates a new gridded, floating point file

for each 15 x 30 mapsheet traversed in each new field season and then combines all years

of each specific 15 x 30 mapsheets together. The combination utilizes the summed

weighting calculated for each grid node. It is therefore equivalent to having gridded all

the data into a single mapsheet. Combining each float file to make the one tile would not

only speed up the update process by not having to grid all of the data, but it would also

allow for custom weighting for different sonar types (currently built into the addWG

program from the Ocean Mapping Group Swathed software toolkit).

 4.2.5 - Developing a New Colour Scale

 The fixed colour scale for the Arctic (0 to 1000 metres) was necessary when viewing

the whole arctic dataset. This colour scheme had limitations because it only produced an

8-bit image. An 8-bit image contained 2
8
 colours, which was 256 colours. It may be more

useful to develop a 16 or 24-bit colour scheme, which would contain either 65,536 or

16,777,216 colours. This would sharpen the current colour scale, thereby improving the

bathymetric image in all depth ranges. The second option would be to create a second 8-

bit colour scheme and stack the two colour schemes together, creating a new 16-bit

44

colour scheme. The first 8-bit colour scheme could be used for shallow waters and the

second 8-bit colour scheme could be used for deeper waters. This second option would

be more appropriate because the colours would be stretched over a smaller depth range,

allowing for easier interpretation.

 4.2.6 - Collapsing r4 Files

 Collapsing the tiles to make each lower zoom level was done with the program

imagemagick. While the math used to calculate which tiles contribute to the lower zoom

level was completed, the program presently only collapses the PNG images. The program

should create new r4 files for each zoom level, which can be done using some of the logic

already built into the decr4 program. An r4 file was a floating point file used to store

gridded bathymetric data (latitude, longitude and depth). The decr4 program was a

program that collapsed by integer steps (in this case 2 steps) floating point files. In this

program, the number of pixels to be combined was specified and these pixels were then

collapsed into one new pixel. For use in this project, a two by two pixel array (four

pixels) from the higher zoom level would be combined into one pixel in the new r4 file.

Collapsing the r4 files would be beneficial for speeding up the time it takes to collapse

each zoom level, as well as having r4’s created for each level. Having r4 files for each

tile at each zoom level would make it easier to implement a new download option,

discussed next.

45

 4.2.7 - Download Option

 The Ocean Mapping Group periodically gets requests for data, which forces the

manual creation of ESRI grids, geotiffs, ascii xyz files, etc... for the user. The Google

Maps interface could possibly automate these requests for data. The website could

provide an interface where users enter information about the area they want data (specific

bounds or map extent), and what format they want the output to be (ie. raw, merged, keb,

segy, r4, geotif, tif world file, ASCII, or ESRI flt file). The website could then send a

script to a processing machine with the float files already created, for each zoom level, at

an appropriate resolution. These float files could be combined together to fill the

requested area and then converted to the appropriate file format. This would effectively

remove the need to update the original Arctic Basemap website.

 4.2.8 - Using the Marker Manager for Stripmap Overlays

 The implementation of the stripmaps into the website as point files from an xml file

worked well for one to two years of stripmap data, approximately 1000 points. Toggling

on and off these 1000 points, did not affect the load time of the website. When four years

of stripmaps (2006 to 2009 stripmaps produced over 8000 points) were added to the

website in the xml format, the load time of the website was very slow. This method of

displaying the stripmap data needed to be improved. Although it had yet to be

46

implemented, Google has a marker manager which is used to manage points (markers)

added to the map. This marker manager compared as to the xml file was similar to the tile

overlay versus the ground overlay. The xml file was fixed to display all the points on the

map regardless of the map extent, whereas the marker manager had the ability to group

markers together and only load points within the map extent. Switching from parsing an

xml file to using the marker manager will be an efficient method for displaying the

stripmaps.

 4.2.9 - Maintain and Update the Website

 The website needed to be maintained and updated as new versions of Google Maps

API and new Google Maps features become available. Recently, Google updated their

maps API from version 2.x to version 3. In this new version, Google had added new

tools to target the mobile maps market as well as update the regular desktop browsing

tools [Google Maps v3, 2010]. This meant that the Ocean Mapping Group’s website

could be customized to perform better on mobile devices.

47

CHAPTER 5. CONCLUSIONS

 The Ocean Mapping Group collects many different sources of data: multibeam

bathymetry, backscatter, water column backscatter, seismic (sub-bottom), CTD and MVP

casts for oceanography, GPS positioning and tidal information. Google Maps was a

particularly agile platform for developing a new method to display the Ocean Mapping

Group’s large multibeam dataset. It also has the potential to provide a platform to link all

other sources of data the Ocean Mapping Group collected. Rather than searching for data

in many different locations, users can now go to one location (Google Maps) to search

and link data both spatially and contextually. Users are able to get a broad overview of an

Arctic region, understand the regional trends and then focus on areas of interest at high

resolutions to see particular features.

 Presenting this topic at both the ArcticNet and Canadian Hydrographic conferences

has increased the demand for using the website and downloading the gridded bathymetry.

Feedback from users shows that this method of displaying multibeam data online was

moving in the right direction. The interface was easy for everyone to use, even if they did

not have a background in GIS or hydrography.

48

BIBLIOGRAPHY

ArcticNet (2010). ArcticNet Description. ArcticNet Website. [on-line] 9 September 2010.

 http://www.arcticnet.ulaval.ca/index.php

Bartlett, J., Beaudoin, J and Hughes Clarke, J.E. (2004). CCGS Amundsen: A New

 Mapping Platform for Canada's North. Lighthouse, Journal of the Canadian

 Hydrographic Association; Edition No. 65.

Beaudoin, J., Hughes Clarke, J.E., Bartlett, J., Blasco, S., and Bennett, R. (2008).

Mapping Canada's Arctic Seabed: Collaborative Survey Processing and

Distribution Strategies. Proceedings of the Canadian Hydrographic Conference

and National Surveyors Conference 2008.

Chang, K-T., (2008). Introduction to Geographic Information Systems. 4
th

 edition. New

York, NY: McGraw-Hill.

Elias, M., Elson, J., Fisher, D., Howell, J. (2008). “Do I Live in a Flood Basin?”

Synthesizing Ten Thousand Maps. CHI 2008 Proceedings, April 5-10, 2008,

Florence Italy. pp. 255-264.

Elson, J., J. Howell, D. Fisher, J. Douceur. (2007). MSR MapCruncher for Virtual Earth.

[on-line] 23 January 2009.

http://research.microsoft.com/en-us/um/redmond/projects/mapcruncher/

Fortier, M. (2003). Project 1.6 The Opening NW Passage: Resources, Navigation,

Sovereignty & Security. ArcticNet Phase 1 (2004-2008). [on-line] 5 June 2010.

http://www.arcticnet.ulaval.ca/research/theme1.php

Geller, T. (2007). Imaging the World: The State of Online Mapping. IEEE Computer

Graphics and Applications, Vol. 27, No. 2, pp. 8-13.

Google Maps v2. (2010). Google Maps API. Google Code [on-line] 20 June 2010.

http://code.google.com/apis/maps/documentation/introduction.html

 http://code.google.com/apis/maps/documentation/javascript/v2/overlays.html

http://www.arcticnet.ulaval.ca/index.php
http://research.microsoft.com/en-us/um/redmond/projects/mapcruncher/
http://www.arcticnet.ulaval.ca/research/theme1.php
http://code.google.com/apis/maps/documentation/introduction.html
http://code.google.com/apis/maps/documentation/javascript/v2/overlays.html

49

Google Maps v3. (2010). Google Maps API. Google Code [on-line] 20 September 2010.

 http://code.google.com/apis/maps/documentation/javascript/

Google Blog. (2008). Google Lat Long Blog: News and Notes by the Google Earth and

Maps Team. [on-line] 20 September 2010.

http://google-latlong.blogspot.com/search/label/imagery

Google Geo Blog. (2010). Google Geo Developers Blog: Big Birthday... Google Maps

API turns 5! [on-line] 20 September 2010.

http://googlegeodevelopers.blogspot.com/2010/06/big-birthday-google-maps-api-

turns-5.html

Google LatLong Blog. (2008). Google Lat Long Blog: Wander the Seafloor like Never

Before. [on-line] 20 September 2010.

 http://google-latlong.blogspot.com/2010/02/wander-seafloor-like-never-before.html

Hawaii Mapping Research Group (2009). Main Hawaiian Islands Multibeam Synthesis.

 School of Ocean and Earth Science and Technology, University of Hawaii at

 Manoa. [on-line] 25 June 2010.

http://www.soest.hawaii.edu/HMRG/Multibeam/explorer.php#Virtual

ImageMagick Studio (1999). Introduction to ImageMagick. [on-line] 20 September 2010.

 http://www.imagemagick.org/script/index.php

Magic Instinct Software. Google Ocean: Google Maps and Google Earth as visualization

tools for Marine Data. [on-line] 27 June 2010.

http://www.justmagic.com/GM-GE.html

Maling, D.H. (1973). Coordinate Systems and Map Projections. London, England:

George Philip and Son Limited.

Pearson, F. (1990). Map Projections: Theory and Applications. Boca Raton, Florida:

CRC Press.

Pridal, K.P. (2008). Tiles à la Google Maps: Coordinates, Tile Bounds and Projection.

[on-line] 6 June 2010.

 http://www.maptiler.org/google-maps-coordinates-tile-bounds-projection/

http://code.google.com/apis/maps/documentation/javascript/
http://google-latlong.blogspot.com/search/label/imagery
http://googlegeodevelopers.blogspot.com/2010/06/big-birthday-google-maps-api-turns-5.html
http://googlegeodevelopers.blogspot.com/2010/06/big-birthday-google-maps-api-turns-5.html
http://google-latlong.blogspot.com/2010/02/wander-seafloor-like-never-before.html
http://www.soest.hawaii.edu/HMRG/Multibeam/explorer.php#Virtual
http://www.imagemagick.org/script/index.php
http://www.justmagic.com/GM-GE.html
http://www.maptiler.org/google-maps-coordinates-tile-bounds-projection/

50

Sandwell, D.T., Smith, W.H.F. (2010) Exploring the Ocean Basins with Satellite

Altimeter Data. NOAA: National Geophysical Data Center. [on-line] 6 June 2010.

http://www.ngdc.noaa.gov/mgg/bathymetry/predicted/explore.HTML

Stewart, R.H. (1985). Methods of Satellite Oceanography. Berkley, California:

University of California Press.

Wikipedia (2010). List of HTTP Status Codes. [on-line] 27 June 2010.

 http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

http://www.ngdc.noaa.gov/mgg/bathymetry/predicted/explore.HTML
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

51

APPENDIX I – WEBSITE CODE

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" style="height:100%">

 <head>

 <meta http-equiv="content-type" content="text/html; charset=UTF-8"/>

 <title>Arctic Basemaps on Google Maps</title>

 <!--last updated June 1, 2010-->

 <script

src="http://maps.google.com/maps?file=api&v=2&sensor=false&key=ABQIAAAA18jzdq

G8DIQ1QMxX2hBP7BS6BeIScKj_qlEgsTuRXWmePJncVBTmVwi5-4zsYGGPSiai7yXPRbpcgA"

type="text/javascript"></script>

 </head>

 <body onunload="GUnload()" onload="load()" style="height:100%">

 <table style="text-align: left; width: 100%;" align="center" border="0"

cellspacing="1" cellpadding="0">

 <tr>

 <td><image src="webpageIMG/omg.gif" alt="OMG"/></td>

 <td><center><h2>Google Maps

with Bathymetry Overlaid</h2></center></td>

 <td><image src="webpageIMG/ArcticNet.gif" alt="ArcticNet"/></td>

 </tr>

 </table>

 <pre>Single left click gives you a link to download the data</pre>

 <div id="map" style="width: 98%; height: 90%;"></div> <!--Display map on the web

and set its dimentions, div id="mapDiv"-->

 <noscript>JavaScript must be enabled in order for you to use Google Maps.

 However, it seems JavaScript is either disabled or not supported by your browser.

 To view Google Maps, enable JavaScript by changing your browser options, and then

 try again.

 </noscript>

 <!--Code to Create Google Maps-->

 <!--set the script type to javascript and the src is used to enter the API key and

points to the Google Maps location-->

 <script type="text/javascript">

 //<![CDATA[

 //Declare variables

 var map;

 var bathyLayer;

 var bathyHybridLayer;

 var bathySatMap;

 var bathyMap;

 // Opacity control stuff

 // A global variable

 var XSLIDERLENGTH = 55; // maximum width that the knob can move (slide width

minus knob width)

 // Create a Custom GControl

 function XSliderControl(i) {

 this.init = i;//initial slider position

 }

 XSliderControl.prototype = new GControl();

 // This function positions the slider to match the specified opacity

 XSliderControl.prototype.setSlider = function(opacity) {

 var left = Math.round((XSLIDERLENGTH*opacity));

 this.slide.left = left;

52

 this.knob.style.left = left+"px";

 }

 // This function reads the slider and sets the overlay opacity level

 XSliderControl.prototype.setOpacity = function() {

 var o = this.slide.left/XSLIDERLENGTH;

 bathyHybridLayer[1].getOpacity = function () {return o;};

 if (this.map.getCurrentMapType() == bathySatMap)

 {

 this.map.setMapType(G_SATELLITE_MAP);//toggle map type to refresh opacity

 this.map.setMapType(bathySatMap);

 }

 }

 // This gets called by the API when addControl(new XSlider()) is used

 XSliderControl.prototype.initialize = function(map) {

 // obtain Function Closure on a reference to "this"

 var that=this;

 // store a reference to the map so that we can make calls on it

 this.map = map;

 // Is this MSIE, if so we need to use AlphaImageLoader

 var agent = navigator.userAgent.toLowerCase();

 if ((agent.indexOf("msie") > -1) && (agent.indexOf("opera") < 1)){this.ie = true}

else {this.ie = false}

 // create the background graphic as a <div> containing an image

 var container = document.createElement("div");

 container.style.width="74px";

 container.style.height="19px";

 // Handle transparent PNG files in MSIE

 if (this.ie) {

 var loader =

"filter:progid:DXImageTransform.Microsoft.AlphaImageLoader(src='SlideControl.png',

sizingMethod='scale');";

 container.innerHTML = '<div style="height:19px; width:74px; ' +loader+ '"

></div>';

 } else {

 container.innerHTML = '';

 }

 // create the knob as a GDraggableObject

 // Handle transparent PNG files in MSIE

 if (this.ie) {

 var loader =

"progid:DXImageTransform.Microsoft.AlphaImageLoader(src='Slider.png',

sizingMethod='scale');";

 this.knob = document.createElement("div");

 this.knob.style.height="19px";

 this.knob.style.width="19px";

 this.knob.style.filter=loader;

 } else {

 this.knob = document.createElement("img");

 this.knob.src = "Slider.png";

 this.knob.height = "19";

 this.knob.width = "19";

 }

 container.appendChild(this.knob);

 this.slide=new GDraggableObject(this.knob, {container:container});

 this.container = container;

 // attach the control to the map

 map.getContainer().appendChild(container);

 // init slider

 this.setSlider(this.init);

53

 // Listen for the slider being moved and set the opacity

 GEvent.addListener(this.slide, "dragend", function() {that.setOpacity()});

 // Listen for map being changed to show / hide slider

 GEvent.addListener(this.map, "maptypechanged", function() {

 if(that.map.getCurrentMapType() == bathySatMap)

 {

 that.knob.style.display="";

 that.container.style.display="";

 }

 else

 {

 that.knob.style.display="none";

 that.container.style.display="none";

 }

 });

 return container;

 }

 // Set the default position for the control

 XSliderControl.prototype.getDefaultPosition = function() {

 return new GControlPosition(G_ANCHOR_TOP_RIGHT, new GSize(7, 47));

 }

 // Add legend (Bathy colour bar)

 function Legend() {}

 Legend.prototype = new GControl;

 Legend.prototype.initialize = function(map) {

 var me = this;

 me.panel = document.createElement("div");

 me.panel.style.background = "white";

 me.panel.innerHTML = '';

 map.getContainer().appendChild(me.panel);

 return me.panel;

 };

 Legend.prototype.getDefaultPosition = function() {

 return new GControlPosition(

 G_ANCHOR_TOP_RIGHT, new GSize(10, 90));

 };

 Legend.prototype.getPanel = function() {

 return me.panel;}

 //Time to try and get markers working using an xml file.

 var SB_icon = new GIcon();

 SB_icon.image = 'http://www.omg.unb.ca/people/jmuggah/SB_marker_red_trans.png';

 SB_icon.iconSize = new GSize(10, 10);

 SB_icon.iconAnchor = new GPoint(5, 5);

 SB_icon.infoWindowAnchor = new GPoint(3, 1);

 var markerGroups = { "red": [], "blue": [], "purple": [], "green": [], "yellow":

[], "orange": []};

 function toggleGroup(icon) {

 for (var i = 0; i < markerGroups[icon].length; i++) {

 var marker = markerGroups[icon][i];

 if (marker.isHidden()) {

 marker.show();

 } else {

 marker.hide();

 }

 }

 }

 // Call this function when the page has been loaded

54

 function load(){

 if (GBrowserIsCompatible()){

 //resizeMap();

 //map = new

GMap2(document.getElementById("mapDiv"),{draggableCursor:'crosshair'});

 map = new GMap2(document.getElementById("map"),{draggableCursor:'crosshair'});

 //Point to directory where tiles are stored

 var bathyTiles = function (a,b) {

 return

"http://www.omg.unb.ca/~jmuggah/tiles/"+a.x+"_"+a.y+"_"+b+".png";

 }

 //Satellite imagery with bathy tiles overlaid

 //Declare array to hold different tile layers

 bathyHybridLayer = new Array();

 //First layer[0] is white background (always exist) tile layer

 bathyHybridLayer[0] = new GTileLayer(new GCopyrightCollection('') , 5);

 bathyHybridLayer[0].getTileUrl = function(tile, zoom) {

 return

"http://www.omg.unb.ca/~jmuggah/white_map_tile_outlined.gif";

 };

 bathyHybridLayer[0].getOpacity = function() {return 1.0;};

 //Next layer [1] is Google satellite tiles

 bathyHybridLayer[1] = G_SATELLITE_MAP.getTileLayers()[0];

 //Third layer [2] is OMG bathy tiles

 bathyHybridLayer[2] = new GTileLayer(new GCopyrightCollection('') , 5);

 bathyHybridLayer[2].getTileUrl = bathyTiles;

 bathyHybridLayer[2].getCopyright = function(a,b) {return "Multibeam

Imagery © Ocean Mapping Group 2010";};

 bathyHybridLayer[2].getOpacity = function () {return 1.0;};//opacity of

the non transparent part

 if(navigator.userAgent.indexOf("MSIE") == -1)

 bathyHybridLayer[1].isPng = function() {return true;};

 bathySatMap = new GMapType(bathyHybridLayer,

 G_SATELLITE_MAP.getProjection(), 'Imagery with

Bathymetry',{errorMessage:"", alt:"Show imagery with Bathymetry"});

 bathySatMap.getTextColor = function() {return "#FFFFFF";};

 map.addMapType(bathySatMap);

 var hc = new GHierarchicalMapTypeControl();

 hc.addRelationship(G_SATELLITE_MAP, bathySatMap , "Bathymetry");

 hc.addRelationship(G_HYBRID_MAP, bathyMap , "Show Bathymetry");

 map.addControl(new GLargeMapControl());

 map.addControl(hc);

 //map.addControl(new GScaleControl());

 map.addControl(new XSliderControl(bathyHybridLayer[1].getOpacity()));

//change [1] to reflect which layer you are making transparent.

 map.setCenter(new GLatLng(72.659588,-77.871094), 3);

 map.setMapType(bathySatMap);

 // map.addOverlay(new GTileLayerOverlay(bathyLayer));

 var bottomLeft = new GControlPosition(G_ANCHOR_BOTTOM_LEFT, new

GSize(100,40));

 map.addControl(new GScaleControl,bottomLeft);

 map.addControl(new GOverviewMapControl());

 // Add a collapsible overview map in the corner

 map.enableScrollWheelZoom();

 // Enable scroll wheel zoom

 map.enableGoogleBar();

55

 //var topRight = new GControlPosition(G_ANCHOR_TOP_RIGHT, new

GSize(25,150));

 //map.addControl(new HtmlControl('<img src="Colours.jpg" width=75

height=100>'),topRight);

 map.addControl(new Legend());

 GEvent.addListener(map, 'mousemove', mouseMove);

 GEvent.addListener(map, "moveend", moveEnd);

 GEvent.addListener(map, "zoomend", zoomEnd);

 //GEvent.addListener(map, "singlerightclick", click);

 GEvent.addListener(map, "click", click);

 updateStatusBar();

 GDownloadUrl("stripmaps.xml", function(data) {

 var xml = GXml.parse(data);

 var markers = xml.documentElement.getElementsByTagName("marker");

 for (var i = 0; i < markers.length; i++) {

 var name = markers[i].getAttribute("name");

 var address = markers[i].getAttribute("address");

 var link = markers[i].getAttribute("link");

 var year = markers[i].getAttribute("year");

 var icon = markers[i].getAttribute("icon");

 //markerGroups[icon].push(tmarker);

 var point = new GLatLng(parseFloat(markers[i].getAttribute("lat")),

 parseFloat(markers[i].getAttribute("lng")));

 //var marker = createMarker(point, name, address, type, color);

 var marker = createMarker(point, name, address, link, year, icon);

 map.addOverlay(marker);

 marker.hide()

 }

 });

 }

 // display a warning if the browser was not compatible

 else {

 alert("Sorry, the Google Maps API is not compatible with this browser");

 }

 }

 //}

 var normalProj = G_SATELLITE_MAP.getProjection();

 function mouseMove(mousePt) {

 var zoom = map.getZoom();

 var oStatusDiv = document.getElementById("mouseTrack");

 var mousePx = normalProj.fromLatLngToPixel(mousePt, zoom);

 var Resolution =

(156543.04*Math.cos(mousePt.y.toFixed(6)*(Math.PI/180)))/Math.pow(2,map.getZoom());

 oStatusDiv.innerHTML = 'Mouse LatLng: ' + mousePt.y.toFixed(6) + ', ' +

mousePt.x.toFixed(6) ;

 oStatusDiv.innerHTML += '
 ';

 oStatusDiv.innerHTML += 'Mouse Px: ' + mousePx.x + ', ' + mousePx.y;

 oStatusDiv.innerHTML += '
';

 oStatusDiv.innerHTML += 'Tile: ' + Math.floor(mousePx.x / 256) + ', ' +

Math.floor(mousePx.y / 256);

 oStatusDiv.innerHTML += '
';

 oStatusDiv.innerHTML += 'Resolution (m/px): ' + Resolution.toFixed(2) ;

 //oStatusDiv.innerHTML += 'Resolution (m/px): ' +

(156543.04*Math.cos(mousePt.y.toFixed(6)*(Math.PI/180)))/Math.pow(2,map.getZoom()) ;

 }

 function moveEnd() {

 updateStatusBar();

 }

 function zoomEnd(oldZ,zoom) {

 updateStatusBar();

 }

 function updateStatusBar() {

56

 var center = map.getCenter();

 var zoom = map.getZoom();

 var bounds = map.getBounds();

 var SW = bounds.getSouthWest();

 var NE = bounds.getNorthEast();

 var oCoords = document.getElementById("coords");

 oCoords.innerHTML = 'Map center: (' + center.y.toFixed(6) + ',' +

center.x.toFixed(6) + ') - zoom: ' + zoom;

 oCoords.innerHTML += '
 ';

 oCoords.innerHTML += 'SW: ' + SW.y.toFixed(6) + ', ' + SW.x.toFixed(6);

 oCoords.innerHTML += '
 ';

 oCoords.innerHTML += 'NE: ' + NE.y.toFixed(6) + ', ' + NE.x.toFixed(6);

 }

 //now we create the sub-bottom markers..

 function createMarker(point, name, address, link, year, icon) {

 //var icon = coloredIcon(iconStr);

 var imarker = new GIcon(SB_icon);

 if (icon == "blue") {

 imarker.image = "http://www.omg.unb.ca/people/jmuggah/SB_marker_blue_trans.png";

 }

 else if (icon == "purple") {

 imarker.image =

"http://www.omg.unb.ca/people/jmuggah/SB_marker_purple_trans.png";

 }

 else if (icon == "green") {

 imarker.image = "http://www.omg.unb.ca/people/jmuggah/SB_marker_green_trans.png";

 }

 else if (icon == "yellow") {

 imarker.image =

"http://www.omg.unb.ca/people/jmuggah/SB_marker_yellow_trans.png";

 }

 else if (icon == "orange") {

 imarker.image =

"http://www.omg.unb.ca/people/jmuggah/SB_marker_orange_trans.png";

 }

 else {

 imarker.image = "http://www.omg.unb.ca/people/jmuggah/SB_marker_red_trans.png";

 }

 var marker = new GMarker(point, imarker);

 markerGroups[icon].push(marker);

 //var marker = new GMarker(point, new customIcons[icon]);

 //var html = '' + name + '
 ';

 GEvent.addListener(marker, 'click', function() {

 // marker.openInfoWindowHtml(html);

 //marker.openInfoWindowHtml('' + name + '
 <a href="' + address + '"

target="_blank">' + address + '');

 //marker.openInfoWindowHtml('' + name + '
 <a href="' + address + '"

target="_blank">Click Here to View');

 marker.openInfoWindowHtml('' + name + '
 <img src="' + address + '"

width="450" height="350" alt="Picture" />
<a href="' + link + '"

target="_blank">Click Here to View');

 //marker.openInfoWindowHtml('' + name + '
' + address);

 });

 return marker;

 }

 /*function click() {

 alert("You clicked the map.. stay tuned for link to download data.");

 }*/

 function click(overlay,latlng) {

 if (latlng) {

57

 var latlon = latlng.toString();

 var temp=latlon.replace("(","");

 var temp2=temp.replace(")","");

 var ll_array = temp2.split(",");

 var ladegs=parseInt(ll_array[0], 10);

 var laminn=ll_array[0]-ladegs;

 var lamins=laminn*60;

 var lamin=parseInt(lamins, 10);

 var ll_array1=ll_array[1].replace("-","");

 var lodegs=parseInt(ll_array1, 10);

 var lominn=ll_array1-lodegs;

 var lomins=lominn*60;

 var lomin=parseInt(lomins, 10);

 if (lamin > 0 && lamin <= 15){

 lamin = 15;

 }

 else if (lamin > 15 && lamin <= 30){

 lamin = 30;

 }

 else if (lamin > 30 && lamin <= 45){

 lamin = 45;

 }

 else{

 lamin = "00";

 ladegs = ladegs + 1;

 }

 if (lomin > 0 && lomin <= 30){

 lomin = 30;

 }

 else{

 lomin = "00";

 lodegs = lodegs + 1;

 }

// var datafile =

"http://www.omg.unb.ca/Projects/Arctic/basemaps/"+ladegs+"_"+lamin+"_N_"+lodegs+"_"+lomin

+"_W_BATHY.html";

function checkUrl(url) {

 var req= new XMLHttpRequest(); // XMLHttpRequest object

 try {

 req.open("HEAD", url, false);

 req.send(null);

 return req.status== 200 ? true : false;

 //alert("Page status: " + req.status);

 }

 catch (er) {

 return false;

 }

}

 if

(checkUrl("http://www.omg.unb.ca/Projects/Arctic/basemaps/"+ladegs+"_"+lamin+"_N_"+lodegs

+"_"+lomin+"_W_BATHY.html")==true){

 map.openInfoWindowHtml(latlng, "LatLong: " + latlng.toString() + "

zoom: " + map.getZoom() + "
Link for download:
 <a

href='http://www.omg.unb.ca/Projects/Arctic/basemaps/"+ladegs+"_"+lamin+"_N_"+lodegs+"_"+

58

lomin+"_W_BATHY.html'

target='_blank'>http://www.omg.unb.ca/Projects/Arctic/basemaps/"+ladegs+"_"+lamin+"_N_"+l

odegs+"_"+lomin+"_W_BATHY.html");

 }

 else{

 map.openInfoWindowHtml(latlng, "LatLong: " + latlng.toString() + "

zoom: " + map.getZoom() + "
Link for download:
 The Ocean Mapping Group does not

have data in this area");

 }

 }

 }

 /*function resizeMap() {

 //contain.style.width = document.body.clientWidth - 330 + "px";

 //contain.style.height = document.body.clientHeight - 300 + "px";

 document.getElementById("mapDiv").style.width = document.body.clientWidth - 100 +

"px";

 document.getElementById("mapDiv").style.height = document.body.clientHeight - 275

+ "px";

 //var oBox = document.getElementById('cBoxes');

 //oBox.style.height = document.body.clientHeight - 250 + 'px';

 if (map) {

 map.checkResize();

 }

 }*/

 //]]>

 </script>

 <div class="statusBar">

 <table cellspacing="0" cellpadding="0" width="100%">

 <tr>

 <td valign="top" width="35%">

 <div class="statusDiv" id="coords">Map center:</div>

 </td>

 <td valign="top" width="35%">

 <div class="statusDiv" id="mouseTrack">Mouse:</div>

 </td>

 <td valign="top" width="30%"><form name="form1"

action="">Show/Hide Subbottom Markers

 <!-- <img

src="http://www.omg.unb.ca/people/jmuggah/SB_marker_red_trans.png" width="10" height="10"

title="Red Markers" alt="Red Marker" />

 <input type="checkbox" name="red" id="red" onClick="toggleGroup('red')"

checked="checked" /> Red Markers

 <img src="http://www.omg.unb.ca/people/jmuggah/SB_marker_blue_trans.png"

width="10" height="10" title="Blue Markers" alt="Blue Marker" />

 <input type="checkbox" name="blue" id="blue"

onClick="toggleGroup('blue')" checked="checked" /> Blue Markers
 -->

 <!-- <img

src="http://www.omg.unb.ca/people/jmuggah/SB_marker_green_trans.png" width="10"

height="10" title="Green Markers" alt="Green Marker" />

 <input type="checkbox" name="green" id="green"

onClick="toggleGroup('green')" /> 2006

 <img

src="http://www.omg.unb.ca/people/jmuggah/SB_marker_yellow_trans.png" width="10"

height="10" title="Yellow Markers" alt="Yellow Marker" />

 <input type="checkbox" name="yellow" id="yellow"

onClick="toggleGroup('yellow')" /> 2007
 -->

 <img

src="http://www.omg.unb.ca/people/jmuggah/SB_marker_purple_trans.png" width="10"

height="10" title="Purple Markers" alt="Purple Marker" />

59

 <input type="checkbox" name="purple" id="purple"

onClick="toggleGroup('purple')" /> 2008

 <!-- <img

src="http://www.omg.unb.ca/people/jmuggah/SB_marker_orange_trans.png" width="10"

height="10" title="Orange Markers" alt="Orange Marker" />

 <input type="checkbox" name="orange" id="orange"

onClick="toggleGroup('orange')" /> 2009
 -->

 </form>

 </td>

 </tr>

 </table>

 </div>

 <hr>

 <pre>

 Data in this map is from the following cruises:

 2000_Healy

 2002_Marai

 2003_Amundsen

 2003_Healy

 2004_Amundsen

 2005_Amundsen

 2006_Amundsen

 2006_Heron_Leg1

 2006_Heron_Leg2

 2007_Amundsen

 2008_Amundsen

 Arctic2008_Heron

 </pre>

 <hr>

 <pre>

 For more information about adding Google Maps to a website click here

 </pre>

 <hr>

 <pre>

Page maintained by James Muggah

June 2010

 </pre>

 </body>

</html>

60

APPENDIX II – TILE CREATION CODE

#!/bin/tcsh

Assumes that Arctic Data resides in /drives/viscount/disk1/data/

Zoom levels 0 - 14

Created by James Muggah April 2010 *updated June 2010

#usage of program

#GoogleMapTileCreation -basemap /drives/Heron1/disk1/jmuggah/NewTiles/GoogleWorld14.blank

-nav

/drives/viscount/disk1/data/2009_Amundsen/002_Vancouver_Island/EM302/decnav/JD188/0055_20

090707_103443.decnav -out /drives/Heron1/disk1/jmuggah/NewTiles/test3.txt

if (-e TileList.txt) then

 rm -f TileList.txt

endif

if (-e Tiles.txt) then

 rm -f Tiles.txt

endif

if (-e Output.tmp) then

 rm -f Output.tmp

endif

if (-e navlist.txt) then

 rm -f navlist.txt

endif

if (-e NewTileList.txt) then

 rm -f NewTileList.txt

endif

if (-e Temp.txt) then

 rm -f Temp.txt

endif

if (-e SortedTiles.txt) then

 rm -f SortedTiles.txt

endif

#create nav file list

ls /drives/viscount/disk1/data/2000_Healy/decnav/JD*/*.decnav >> navlist.txt

ls /drives/viscount/disk1/data/2002_Marai/SB2100/decnav/jd*/*.decnav >> navlist.txt

ls /drives/viscount/disk1/data/2003_Amundsen/*/EM300/decnav/*/*.decnav >> navlist.txt

ls /drives/viscount/disk1/data/2003_Healy/decnav/*/*.decnav >> navlist.txt

ls /drives/viscount/disk1/data/2003_Healy_Eastern_Arctic/decnav/2*/*.decnav >>

navlist.txt

ls /drives/viscount/disk1/data/2004_Amundsen/ArcticNet_Leg1/EM300/decnav/*/*.decnav >>

navlist.txt

ls /drives/viscount/disk1/data/2004_Amundsen/GSC_Survey/EM300/decnav/*/*.decnav >>

navlist.txt

ls /drives/viscount/disk1/data/2004_Amundsen/Labrador_Transit/EM300/decnav/*/*.decnav >>

navlist.txt

ls /drives/viscount/disk1/data/2004_Amundsen/Leg9/EM300/decnav/*/*.decnav >> navlist.txt

ls /drives/viscount/disk1/data/2004_Amundsen/Leg8/EM300/decnav/JD*/*.decnav >>

navlist.txt

ls /drives/viscount/disk1/data/2005_Amundsen/0*/EM300/decnav/JD*/*.decnav >> navlist.txt

ls /drives/viscount/disk1/data/2006_Amundsen/0*/EM300/decnav/JD*/*.decnav >> navlist.txt

ls /drives/viscount/disk1/data/2006_Heron_Leg1/0*/EM3002/decnav/JD*/*.decnav >>

navlist.txt

ls /drives/viscount/disk1/data/2006_Heron_Leg2/0*/EM3002/decnav/JD*/*.decnav >>

navlist.txt

ls /drives/viscount/disk1/data/2007_Amundsen/0*/EM300/decnav/JD*/*.decnav >> navlist.txt

ls /drives/viscount/disk1/data/2008_Amundsen/0*/EM300/decnav/JD*/*.decnav >> navlist.txt

ls /drives/viscount/disk1/data/2008_Heron_Arctic/0*/EM3002/decnav/JD*/*.decnav >>

navlist.txt

foreach LIST (`cat /drives/viscount/disk1/data/2009_Amundsen/merged_input_NOLeg3.list`)

61

 set NAVI = `echo $LIST | awk 'BEGIN { FS = "/" } ; {print

"/drives/viscount/disk1/data/2009_Amundsen/"$1"/"$2"/decnav/"$4"/"$5}'`

 set DNAVI = `echo $NAVI | awk 'BEGIN { FS = "." } ; {print $1".decnav"}'`

 echo $DNAVI >> navlist.txt

end

foreach FILE (`cat navlist.txt`)

 #echo "Doing" $Navlist

 /home/jmuggah/local/linux/bin/GoogleMapTileCreation -basemap

/drives/Heron1/disk1/jmuggah/NewTiles/GoogleWorldTest.blank -nav $FILE -skip 10 -out

/drives/Heron1/disk1/jmuggah/NewTiles/TileList.txt

end

#Going to try and create tiles around tile from decnav files..

cat TileList.txt | awk '{print $1,$2,$3"\n"$1+1,$2-

1,$3"\n"$1+1,$2,$3"\n"$1+1,$2+1,$3"\n"$1,$2-1,$3"\n"$1,$2+1,$3"\n"$1-1,$2-1,$3"\n"$1-

1,$2,$3"\n"$1-1,$2+1,$3"\n"$1+2,$2-2,$3"\n"$1+1,$2-2,$3"\n"$1,$2-2,$3"\n"$1-1,$2-

2,$3"\n"$1-2,$2-2,$3"\n"$1-2,$2-1,$3"\n"$1-2,$2,$3"\n"$1-2,$2+1,$3"\n"$1-2,$2+2,$3"\n"$1-

1,$2+2,$3"\n"$1,$2+2,$3"\n"$1+1,$2+2,$3"\n"$1+2,$2+2,$3"\n"$1+2,$2+1,$3"\n"$1+2,$2,$3"\n"

$1+2,$2-1,$3}' >! NewTileList.txt

awk < NewTileList.txt '{ print $1, $2, $3 }'| sort -n| uniq >! SortedTiles.txt

awk < SortedTiles.txt '{ print $1, $2 }'| sort -n| uniq >! Tiles.txt

#Trying to create an array of column and row tiles.

set countc = (`cat Tiles.txt | awk '{print $1}'`)

set countr = (`cat Tiles.txt | awk '{print $2}'`)

#Now trying to find the size of the arrays.

set arraysize = `echo $#countc`

echo $arraysize

#--------------------Now for tile creation----------------------------

@ level = 14

set TEMP_LIST_FILE = `mktemp`

while ($level == 14)

 echo "Working on level "$level >> Output.tmp

 set DIR = `echo $level`

 set Folder = `echo $level`

 if (! -e $Folder) then

 mkdir $Folder

 endif

 @ row = `echo $level | awk '{print 2^$1}'`

 @ column = $row

 echo "Row & Colums "$row >> Output.tmp

 set i = 1

 while ($i < $arraysize)

 echo "Column: "$countc[$i] "Row: "$countr[$i] # >> Output.tmp

 # 1 => Top Left

 # 2 => Bottom Right

 set lon1 = `echo $countc[$i] "* 360 /" $column "- 180" | bc -l`

 #echo "Lon 1 "$lon1

 set lon2 = `echo "360 /" $column "+" $lon1 | bc -l`

 #echo "Lon 2 "$lon2

 set lat1 = `echo "-1 *" $countr[$i] "* 40075016.685578488 / "$row" +

20037508.342789244" | bc -l`

 set lat2 = `echo "-40075016.685578488 /" $row" +" $lat1 | bc -l`

 set projlat = `echo "("$lat1"+"$lat2") / 2" | bc -l`

62

 set lat3 = `echo "0" $lat1 | invproj +proj=merc +a=6378137 +b=6378137

+lon_0=0 +lat_ts=0 -f '%.6f' | awk '{print $2}'`

 set lat4 = `echo "0" $lat2 | invproj +proj=merc +a=6378137 +b=6378137

+lon_0=0 +lat_ts=0 -f '%.6f' | awk '{print $2}'`

 set projlat2 = `echo "0" $projlat | invproj +proj=merc +a=6378137

+b=6378137 +lon_0=0 +lat_ts=0 -f '%.6f' | awk '{print $2}'`

 #echo "lat 1 "$lat3 " lat 2 "$lat4 " projlat "$projlat2

 #attempt 1 at finding resolution according to zoom

 #set res1 = `echo "((1853 * 60 *(" $lon1 "-" $lon2 ")) / c(" $projlat2 "*

(3.141592654 / 180))) / 256" | bc -l`

 set res1 = `echo "156543.04 * c(" $projlat2 "* (3.141592654 / 180)) /

2^" $level | bc -l`

 #echo $res1

 @ res2 = `echo $res1 | awk '{ if ($1 < 10) print "1" }'`

 if ($res2 == 1) then

 set res1 = 10

 #echo $res1

 endif

 #echo $projlat2

 # Give make_blank file name

 set filename = `echo $countc[$i]"_"$countr[$i]"_"$level`

 echo $filename >> Output.tmp

 echo "trying tile "$filename

 echo "Doing the MakeBlank -- can take some time..." >> Output.tmp

 ./do_make_blank $filename $lat3 $lon1 $lat4 $lon2 $projlat2 $res1 >

/dev/null

 echo "Done Make_Blank !!!" >> Output.tmp

 # make the r4

 tor4 $filename

 echo "Made the R4's !!" >> Output.tmp

 # Do the weigh Grid

 echo "Gridding!" >> Output.tmp

 #---

 #Here we need to give it the list of merged files (in array)

 cat SortedTiles.txt | awk '{if ($1 == '"$countc[$i]"') if ($2 ==

'"$countr[$i]"') print $3 }' >! Temp.txt

 weigh_grid $filename `cat Temp.txt`

 echo "Done Gridding!" >> Output.tmp

 # r4to8bit

 r4to8bit -low -1000 -high 0 $filename.r4 $filename.8bit

 # Check to see in the file is empty, if it is continue & delete existing

files

 if (`checkEmpty $filename.8bit` == Empty) then

 echo "Empty Mapsheet!!! Removing empty files" >> Output.tmp

 rm -f $filename.*

 @ i++

 continue

 else if (`checkEmpty $filename.8bit` == NotEmpty) then

 echo "Not Empty! Keep Going" >> Output.tmp

 endif

63

 # AddSun

 addSUN -range 130 205 $filename

 # mix_ci

 mix_ci -mask $filename.sun_315 -ignore 255 -c $filename.8bit -i

$filename.sun_315 -ppm -m $filename.ppm

 # convert to png 256x256

 convert -transparent white $filename.ppm temp.png

 convert -resize 256x256! temp.png $filename.png

 rm -f temp.png

 #cp $filename.png /homes/jmuggah/public_html/tiles/

 #If want to gzip files do it here..

 #gzip -f $filename.*

 mv *$DIR.* $DIR

 #@ countc = $countc + 1

 echo "Increment Colomn!" >> Output.tmp

 @ i++

 echo $i

 end

 @ level = $level + 1

end

64

APPENDIX III – FILL GAP CODE

#!/bin/tcsh

foreach FILE ($*)

gunzip $FILE

set FILE_PREFIX = `echo $FILE | sed -e 's/.r4.gz//g' | awk '{print $1}' `

set FILE_PREFIX = `echo $FILE | sed -e 's/.r4//g' -e 's/14\///g' | awk '{print

$1}' `

 set FILE_PREFIX = `echo $FILE | sed -e 's/.r4//g' | awk '{print $1}' `

 echo "using prefix : $FILE_PREFIX"

 if (! (-e $FILE_PREFIX.orig.png)) then

 cp $FILE_PREFIX.png $FILE_PREFIX.orig.png

 endif

r4to8bit -low -1000 -high 0 $FILE_PREFIX.r4 $FILE_PREFIX.8bit

GM_fillGap -edgeit -ignore 0 $FILE_PREFIX.8bit $FILE_PREFIX.edge.8bit

addSUN -range 130 205 $FILE_PREFIX

GM_fillGap -edgeit -ignore 255 $FILE_PREFIX.sun_315 $FILE_PREFIX.edge.sun_315

mix_ci -mask $FILE_PREFIX.edge.sun_315 -ignore 255 -c $FILE_PREFIX.edge.8bit -i

$FILE_PREFIX.edge.sun_315 -ppm -m $FILE_PREFIX.edge.ppm

convert -transparent white $FILE_PREFIX.edge.ppm temp.png

convert -resize 256x256! temp.png $FILE_PREFIX.png

rm temp.png

#rm $FILE_PREFIX.fill.sun_315

rm $FILE_PREFIX.edge.sun_315

#rm $FILE_PREFIX.fill.8bit

rm $FILE_PREFIX.edge.8bit

rm $FILE_PREFIX.edge.ppm

#display $FILE_PREFIX.png &

#gzip $FILE_PREFIX.r4

end

exit

65

APPENDIX IV – COLLAPSE CODE

#!/bin/tcsh

Trying to collapse the tiles using adjoin program.

Created by James Muggah May 2010

@ level = 14

#if there is already a PreZoom file, delete it.

if (-e PreZoom.txt) then

 rm -f PreZoom.txt

endif

if (-e SortedPre.txt) then

 rm -f SortedPre.txt

endif

#to do all zoom levels, first copy Tiles.txt to a new file. then

#create a loop while ($level > 3). then we have a temp list for each zoom.

#Trying to create an array of column and row tiles.

set countc = (`cat Tiles.txt | awk '{print $1}'`)

set countr = (`cat Tiles.txt | awk '{print $2}'`)

#Now trying to find the size of the arrays.

set arraysize = `echo $#countc`

echo $arraysize

set UpDIR = `echo $level - 1 | bc -l`

if (! -e UpDIR.txt) then

 mkdir $UpDIR

endif

set i = 1

while ($i < $arraysize)

#while ($level > 2)

 #echo "Working on level "$level >> Output.tmp

 #@ zoom = $level - 1

 set DIR = `echo $level`

 set zoom = `echo $level "- 1" | bc -l`

 set filename = `echo $countc[$i]"_"$countr[$i]"_"$level`

 # do math to find file name of mapsheet in above zoom level

 set MATHc = `echo $countc[$i] "+ 1" | bc -l`

 set MATHr = `echo $countr[$i] "+ 1" | bc -l`

 set MATHz = `echo $level`

 #Calculate the tile you are in. column/2^zoom * 2^zoom-1

 set PreZoomC = `echo "(" $MATHc"/2^"$MATHz")*2^("$MATHz"-1)" | bc -l`

 set PreZoomR = `echo "(" $MATHr"/2^"$MATHz")*2^("$MATHz"-1)" | bc -l`

 # if column/row is odd add 0.5 to get to whole # and subtract 1 to get

 # column/row starting at 0

 if ($countc[$i] % 2 != 1) then

 set PreZoomC = `echo "(" $PreZoomC" + 0.5)-1" | bc -l`

 else

 set PreZoomC = `echo $PreZoomC" - 1" | bc -l`

 endif

 if ($countr[$i] % 2 != 1) then

 set PreZoomR = `echo "(" $PreZoomR" + 0.5)-1" | bc -l`

 else

 set PreZoomR = `echo $PreZoomR" - 1" | bc -l`

 endif

 set PreZoomCI = `echo $PreZoomC | awk -F \. '{print $1}'`

66

 set PreZoomRI = `echo $PreZoomR | awk -F \. '{print $1}'`

 set Pre_filename = `echo $PreZoomCI"_"$PreZoomRI"_"$zoom`

 #here we need to echo out the filename and the prezoom filename to a file

 #so we get a unique list. Then we know which tiles to put where.

 echo $Pre_filename" " $filename >> PreZoom.txt

 @ i++

 #echo $i

end

#set j = 1

#while ($j < $arraysize)

#To go down a level from previous zoom just multiply row column by 2 and you get top left

#tile then just need to add 1 to row, then column, then row & column to get other 3

tiles.

#need to have.. if exist (1 row down, place it in, otherwise just put in generic 256x256

blank

#image.

#cat PreZoom.txt | awk '{if ($1 == '"$Pre_filename"') print $2 }' >! Temp.txt

awk < PreZoom.txt '{ print $1 }'| sort -n| uniq >! SortedPre.txt

if (-e Htemp.png) then

 rm -f Htemp.png

endif

if (-e H2temp.png) then

 rm -f H2temp.png

endif

foreach FILE (`cat SortedPre.txt`)

 set UpperLeftc = `echo $FILE | awk 'BEGIN { FS = "_" } ; {print $1*2}'`

 set UpperLeftr = `echo $FILE | awk 'BEGIN { FS = "_" } ; {print $2*2}'`

 set PZoom = `echo $FILE | awk 'BEGIN { FS = "_" } ; {print $3+1}'`

 set UpperRightc = `echo $UpperLeftc + 1 | bc -l`

 set UpperRightr = `echo $UpperLeftr`

 set LowerLeftc = `echo $UpperLeftc`

 set LowerLeftr = `echo $UpperLeftr + 1 | bc -l`

 set LowerRightc = `echo $UpperLeftc + 1 | bc -l`

 set LowerRightr = `echo $UpperLeftr + 1 | bc -l`

 set UpperLeft = `echo $DIR"/"$UpperLeftc"_"$UpperLeftr"_"$PZoom".png"`

 #echo $UpperLeft

 set UpperRight = `echo $DIR"/"$UpperRightc"_"$UpperRightr"_"$PZoom".png"`

 set LowerLeft = `echo $DIR"/"$LowerLeftc"_"$LowerLeftr"_"$PZoom".png"`

 set LowerRight = `echo $DIR"/"$LowerRightc"_"$LowerRightr"_"$PZoom".png"`

 if (-e $UpperLeft) then

 set UL = 1

 else

 set UL = 0

 endif

 if (-e $UpperRight) then

 set UR = 1

 else

 set UR = 0

 endif

 if (-e $LowerLeft) then

 set LL = 1

 else

 set LL = 0

 endif

 if (-e $LowerRight) then

67

 set LR = 1

 else

 set LR = 0

 endif

 if ($UL == 1 && $UR == 1) then

 adjoin -m H -b none $UpperLeft $UpperRight Htemp.png

 endif

 if ($LL == 1 && $LR == 1) then

 adjoin -m H -b none $LowerLeft $LowerRight H2temp.png

 endif

 if ($UL == 1 && $UR != 1) then

 adjoin -m H -b none $UpperLeft generic_tile.png Htemp.png

 endif

 if ($UL != 1 && $UR == 1) then

 adjoin -m H -b none generic_tile.png $UpperRight Htemp.png

 endif

 if ($UL != 1 && $UR != 1) then

 adjoin -m H -b none generic_tile.png generic_tile.png Htemp.png

 endif

 if ($LL == 1 && $LR != 1) then

 adjoin -m H -b none $LowerLeft generic_tile.png H2temp.png

 endif

 if ($LL != 1 && $LR == 1) then

 adjoin -m H -b none generic_tile.png $LowerRight H2temp.png

 endif

 if ($LL != 1 && $LR != 1) then

 adjoin -m H -b none generic_tile.png generic_tile.png H2temp.png

 endif

 adjoin -m V -b none Htemp.png H2temp.png $UpDIR"/"$FILE".png"

 convert -resize 256x256 $UpDIR"/"$FILE".png" $UpDIR"/"$FILE".png"

 if (-e Htemp.png) then

 rm -f Htemp.png

 endif

 if (-e H2temp.png) then

 rm -f H2temp.png

 endif

 echo "working.."

end

 #set outpng = (`cat PreZoom.txt | awk '{print $1}'`)

@ level = $level - 1

#end

#adjoin -m H -b none 5220_5570_14.png 5221_5570_14.png Htemp.png

#adjoin -m H -b none 5220_5571_14.png 5221_5571_14.png H2temp.png

#adjoin -m V -b none Htemp.png H2temp.png 2610_2785_13.png

#convert -transparent white -resize 256x256 2610_2785_13.png 2610_2785_13.png

#convert -resize 256x256 2610_2785_13.png 2610_2785_13.png

#end

68

APPENDIX V – STRIPMAP CREATION CODE

#!/bin/tcsh

Creates a xml file with all the goodies needed to put the stripmap image

into Google Maps

Created by James Muggah May 2010

#ls /drives/viscount/disk1/data/2008_Amundsen/maps_25x5/box_headers/Box.header* >>

maps.txt

if (-e dirs.txt) then

 rm -f dirs.txt

endif

if (-e maps.txt) then

 rm -f maps.txt

endif

if (-e stripmaps.xml) then

 rm -f stripmaps.xml

endif

 #echo "/drives/viscount/disk1/data/2006_Amundsen/maps_25x5/" >> dirs.txt

 #echo "/drives/viscount/disk1/data/2007_Amundsen/maps_25x5/" >> dirs.txt

 echo "/drives/viscount/disk1/data/2008_Amundsen/maps_25x5/" >> dirs.txt

 #echo "/drives/viscount/disk1/data/2009_Amundsen/maps_25x5/" >> dirs.txt

echo "<markers>" >> stripmaps.xml

foreach DIR (`cat dirs.txt`)

 set project = `echo $DIR | awk -F / '{print "nwp"$6}' | sed 's/_Amundsen//'`

 set year = `echo $DIR | awk -F / '{print $6}' | sed 's/_Amundsen//'`

 if ($year == 2003) then

 set icon = `echo "red"`

 else if ($year == 2004) then

 set icon = `echo "red"`

 else if ($year == 2005) then

 set icon = `echo "blue"`

 else if ($year == 2006) then

 set icon = `echo "green"`

 else if ($year == 2007) then

 set icon = `echo "yellow"`

 else if ($year == 2008) then

 set icon = `echo "purple"`

 else if ($year == 2009) then

 set icon = `echo "orange"`

 endif

 ls `echo $DIR"box_headers/Box.header*"` >> maps.txt

 #echo "<markers>" >> stripmaps.xml

 foreach FILE (`cat maps.txt`)

 set lat = `edhead -show $FILE | awk 'NR==2{print $11}'`

 set lon = `edhead -show $FILE | awk 'NR==2{print $9}'`

 set map_num = `echo $FILE | awk -F / '{print $9}' | sed 's/Box.header//'`

 set address = `echo

"http://www.omg.unb.ca/Projects/Arctic/stripmaps/"$project"/img/strip_"$map_num".gif"`

 set link = `echo

"http://www.omg.unb.ca/Projects/Arctic/stripmaps/"$project"/"$map_num".html"`

 echo ' <marker name="Mapsheet '$map_num'" address="'$address'" link="'$link'"

lat="'$lat'" lng="'$lon'" year="'$year'" icon="'$icon'"/>' >> stripmaps.xml

 end

 #echo "</markers>" >> stripmaps.xml

end

echo "</markers>" >> stripmaps.xml

