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ABSTRACT 

 

While an imperfect attenuation coefficient has no effect on bathymetry accuracy, 

it significantly reduces the value of the backscatter strength. As we move towards more 

precise calibration of backscatter strength to get additional information about the nature 

of the seafloor, such as bottom type or bottom micro roughness and their respective 

lateral and temporal homogeneity, the requirement for a precise attenuation coefficient is 

increasingly important. The need for better calibrated acoustic backscatter strength 

estimate is driven by operational needs in environmental monitoring, oil field 

development and defense applications, such as submarine and mine detection.  A 

particular application used as an example is monitoring seasonal changes in backscatter 

on the floor of a fjord with active turbidity currents. 

Most recently, multi-sector multibeam sonars have made the requirement for 

proper attenuation coefficients more pressing. These systems are capable of operating 

simultaneously on different frequencies, often use CW and FM chirp pulses and divide 

their transmit fan in multiple sectors and even in multiple swaths, with the purpose of 

allowing a sufficient sounding density alongtrack at reasonable vessel speeds, achieving 

longer range capability and thus reducing ship time surveying. However, as attenuation is 

a frequency, temperature, salinity and pressure dependent environmental control, the 

fidelity of the backscatter strength output from these new multi-sector systems potentially 

suffer by different wave absorption in their multiple sectors/swaths, if an incorrect 

attenuation is used. 
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This research reviews the role of attenuation and its proper application, and the 

sensitivity of attenuation variation. It then develops an extension to the UNB/OMG code 

to specifically correct any input multibeam data, accounting for the attenuation applied, 

and properly reapplies a new attenuation using a specific CTD and specific centre 

frequency.  
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Chapter 1: INTRODUCTION  

 

As electromagnetic waves such as light, radar and microwaves attenuate very 

rapidly in salt water, they are not able to propagate for significant distances in the ocean. 

On the other hand, as acoustic waves suffer a much lower attenuation than 

electromagnetic waves in that same environment, it has become the main tool for sensing, 

identifying and communicating under the ocean surface. 

However, the internal structure of the sea and its peculiar upper and lower surface 

generate diverse effects upon the acoustic waves created underwater, making the sea a 

complex medium for the propagation and study of sound. The quality of the products 

generated by most underwater devices depends on a proper identification and 

compensation of these undesirable effects upon acoustic waves, such as in the new multi-

sector sonars, shown in Figure 1.1. 

 

 

 

 

Figure 1.1 - New multi-sector sonars from Kongsberg Company: EM302 

(left) and EM710 (right) (from [http://www.kongsberg.com/]). 

http://www.kongsberg.com/
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If properly compensated, multibeam backscatter data can provide valuable 

information about the nature of the seafloor, such as bottom type or bottom micro 

roughness and their respective spatial and temporal homogeneity. As part of that 

compensation, however, frequency and environment-dependent attenuation must be 

correctly applied. 

Rapidly advancing technology has put at the service of contemporary 

Hydrography more modern equipment, including new multi-sector sonars. These systems 

can produce high resolution bathymetric contour charts, revealing, in detail, the shape of 

the seafloor features. Besides that, they can provide 100% seabed coverage, boulders 

detection and, if properly compensated, provide additional information about the nature 

of the seafloor from backscatter images, as shown in Figure 1.2. 

 

 

Figure 1.2 - At the top, a high resolution bathymetric map, with 100% 

coverage and some detected boulders of different sizes. At the bottom, a backscatter 

image of the same area, able to provide information about the nature of the seafloor 

(from [Hughes Clarke, 2011c]). 

 

Unlike older single sector systems, these new devices are capable of operating 

simultaneously on different frequencies, dividing their transmit fan in multiple sectors 
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and even in multiple swaths (Figure 1.3), with the purpose of allowing a sufficient and 

uniform sounding density alongtrack at reasonable vessel speeds. This helps to ensure 

International Hydrographic Organization (IHO) compliant target detection. When 

combined with FM pulses, which provide longer range capability, it can reduce ship 

surveying time. Furthermore, the development of multi-sectors also provided yaw 

stabilization. 

 

Figure 1.3 - Old version of multibeam echo sounder (MBES) with only one 

sector one frequency (left) and new version of MBES with multi-sectors multi-

frequencies dual swath (right). 

 

Figure 1.4 shows an example of EM302 operating in a Dual Swath Medium 

Mode. As we can notice, operating at that mode, the system generates 8 different sectors, 

each one with a different centre frequency, divided in two swaths.   
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Figure 1.4 - Multi -sector sonar EM302 operating in a Dual Swath Medium 

Mode (from [Hughes Clarke, 2011c]). 

 

However, as attenuation is frequency dependent (also depends on temperature, 

salinity, pH and pressure, as discussed in detail later), each sector suffers with different 

wave absorption, with an impact on the backscattered signals and their products. 

Attenuation issues can become worse in cases like the one presented in Figure 1.5: it is 

also an EM302, but operating in a Dual Swath, Deep Mode, with 16 different sectors and 

16 different frequencies; thus 16 different attenuation values. 

 

Figure 1.5 - Multi -sector sonar EM302 operating in a Dual Swath Deep Mode 

(from [Hughes Clarke, 2011c]). 
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While an imperfect attenuation coefficient has no effect on bathymetry accuracy, it 

significantly reduces the utility of the backscatter strength measurement. As we move 

towards more precise calibration of backscatter strength to get additional information 

about the nature of the seafloor, the requirement for precise attenuation coefficients 

becomes increasingly important. 

Currently, the need for a better calibrated acoustic backscatter strength estimate is 

driven by operational needs in oil field development, environmental monitoring and 

defense applications. For an oil platform to sit on the bottom, we must know the 

geotechnical properties of the seafloor. Another application is in environmental 

monitoring of fishery habitats. Nowadays, as we mandate to preserve offshore resources, 

we must know the bottom substrate for certain species, to determine, for example, if it is 

a habitat where scallop will live or where clam will bury. In some particular cases, 

monitoring environmental changes is also mandated. Such change is likely to be very 

subtle, requiring very precise calibration. 

Finally, two defense applications are with submarines and seabed mines. As 

submarines often sit on the bottom, it is critical to know the seabed classification to 

guarantee they are not going to damage the hull.  Besides that, seafloor characterization is 

important to decide the place to launch seabed mines: if the bottom has too many 

boulders, we might not find the mines later; if the bottom has a substrate where a seabed 

mine can be buried, it should be avoided also. Thus, in a mine hunting operation, the fact 

of not visualizing any mine does not guarantee they do not exist: depending on the 

seafloor classification, they might be buried. It is important to highlight that maybe not 

all these applications have this discrete sensitivity (+/- 2dB).   
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Multibeam backscatter data represent a major seabed discrimination tool. For 

seafloor characterization, however, one of the most significant limitations is the absolute 

calibration. There are many components of this and environmental and frequency 

controls on the backscatter level are two of the most important ones. As many multibeam 

backscatter data are reduced imperfectly for attenuation, this thesis examines how 

important it is and how consequential it is. It introduces a precise and explicit method to 

properly compensate given a CTD (Conductivity-Temperature-Depth) and full 

knowledge of specific sector frequencies used, as long as the absorption coefficient 

already applied is preserved. Example cases are given for two different frequencies for 

historical data that were imperfectly compensated and the method is demonstrated.  
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Chapter 2: BOTTOM BACKSCATTER STRENGTH  

 

Bottom backscatter strength (BBS) is defined as the ratio of the backscattered 

intensity IB (taken 1 meter from the target) to the incident wave intensity II (per unit area 

per unit solid angle) on the seafloor. Normally, it is expressed in decibels and calculated 

by the logarithmic formula 10log (IB/II). The quotient expresses the ratio of the 

backscattered (IB) and incident (II) intensities in the linear scale, which is termed as 

backscatter coefficient [Urick, 1983]. 

While we want IB and II, what we actually measure is IS (received wave intensity 

by the transducer) and Io (transmitted wave intensity by the transducer) is assumed to be 

known. As we can notice in Figure 2.1, the IS/Io ratio is a function of not just the 

sediment type and grazing angle (S(i˼)), but also the transmitter (˼ , Ɋ) and receiver (˼, 

Ɋ) beam patterns, ensonified area (dA), the range between the echo sounder and the 

seafloor (R) and  the attenuation in the water (Ŭw).  

 

Figure 2.1 - Bottom Backscatter Strength (edited from [deMoustier, 2011]). 
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Thus, the backscattered energy that returns to the ship (Figure 2.2) depends not 

just on the seafloor physical properties themselves but also on the sonar configuration, 

water column propagation and measurement geometry. Once these last geometric and 

radiometric modulations on the backscatter intensity are properly reduced, the backscatter 

strength (BS) should represent only inherent properties of the seabed, becoming an useful 

tool for seafloor classification [Oliveira Jr., 2007]. 

 

Figure 2.2 - Backscatter strength signatures measured from MBES data 

collected by survey ship (edited from [Hughes Clarke et al., 1997]). 

 

Each sediment type (e.g., clay, silt, sand, gravel, cobbles, rock, shown in Figure 

2.3) has its own physical properties: saturated bulk density, sound speed, spectral 

strength, spectral exponent, volume scattering and attenuation, which control the seabed 

echo strength. Thus, each sediment will present its own backscatter strength signature, 

also called the angular response curve (ARC), as represented in this same Figure. 
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Figure 2.3 - Each different sediment type (clay, silt, sand, gravel, cobbles, 

rock etc) is going to present its own BS signature, also called angular response curve 

(edited from [Hughes Clarke et al., 1997 and Hughes Clarke, 2011c]). 

 

Figure 2.4 represents the seabed type prediction process from measured BS 

signatures, after geometric and radiometric reduction. Those compensated signatures (left 

side) are correlated with mathematical model [Jackson et al., 1986] curves (generated for 

the same centre frequencies of acquisition devices), in an effort to provide seafloor 

characterization. Unfortunately, BS signatures measurements are imperfect for a variety 

of reasons including Ŭ, source level, beam patterns and seafloor slope.  
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Figure 2.4 - Seabed type prediction from BS signatures measured, after 

geometric and radiometric reduction (edited from [Hughes Clarke et al., 1997 and 

APL, 1994]). 

 

Notice also in Figure 2.4 (right), which represents model curves (angular response 

curves), that distinguishing rough rock from silt is easy due to its large backscatter 

strength difference (about 25 dB considering the middle of those two curves). On the 

other hand, distinguishing medium sand from coarse sand is hard due to its tiny 

backscatter strength difference, requiring us to be very strict in terms of environmental 

controls, which can generate considerable fluctuations on these angular response curves. 

The proposed contribution of this research is developing a proper environmental 

reduction for attenuation for those multi-sector sonars, although it can also be applied to 

single sector sonars. It may not solve the whole issue of seabed classification from 

backscatter strength images, which is a big and growing problem when using these new 

multi-frequency devices. However, this contribution represents an effort to minimize this 

component. 
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Chapter 3: PROPAGATION OF SOUND IN THE WATER  

 

3.1 Transmission loss, spherical spreading and attenuation itself 

While travelling through water, acoustical waves suffer delay, distortion and 

impairment, with a gradual loss in the intensity of the original sound signal, called 

transmission loss (TL), and conventionally defined [Urick, 1983] as: 

                               TL = 20 log R + ŬR                                                             (3.1) 

where R is the range and Ŭ is the attenuation coefficient.  

However, considering the two-way travel of the acoustic waves in the water, 

transmission loss may also be expressed as: 

                               2TL = 40 log R + 2ŬR                                                         (3.2) 

Based on equation 3.2, transmission loss consists of the sum of two parts, one due 

to spherical spreading of the signal (40 log R) and the other due to attenuation (2ŬR). The 

first part, spreading loss, is related to the geometrical effect representing the regular 

weakening of a sound signal as it spreads outward from the source. Expressed by decibels 

per total distance travelled, spreading loss varies with range according to the logarithm 

of the range. 

The second part, attenuation, considers the effects of absorption, scattering and 

leakage out of sound channels, varying linearly with range and being expressed by 

decibels per unit distance. As it comprises the conversion of acoustic energy into heat, 

attenuation represents the actual loss of acoustic energy to the medium in which 

transmission is taking place [Urick, 1983].    
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For many years, the constituents of sea water responsible for attenuation of sound 

were an intriguing mystery for scientists. It was soon clear that the attenuation of sound 

in the sea water was considerably higher than the one observed in pure water, and that 

phenomenon could not be attributed to scattering, refraction, or other anomalies 

assignable to propagation in the natural environment. As an example, Figure 3.1 shows 

the results of a laboratory measurement, where the attenuation in sea water was 

considered around 30 times greater than in distilled water at frequencies between 5 and 

50 kHz [Urick, 1983].    

 

Figure 3.1 - Attenuation coefficients in sea water and in distilled water (from 

[Urick, 1983]). 

 

Currently, the attenuation of sound in the sea water is considered to be the sum of 

three contributions: those from absorption in pure water and from chemical relaxation 

processes in magnesium sulfate (MgSO4) and boric acid [B(OH)3]. As contributions from 

other reactions are small, they were not included [Francois and Garrison, 1982, a, b]. 

Based on this, Francois and Garrison [1982b] developed a general equation for the 
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attenuation of sound in sea water, which applies to all oceanic conditions and frequencies 

from 200 Hz to 1 MHz, was written as: 

Total 

absorption 

=

= 
Boric Acid 

Contribution  

+

+ 

Magnesium 

Sulfate 

Contribution  

+

+ 
Pure Water 

Contribution  

 

‌ ὃὖὪ    (3.3) 

where f is the frequency of the sound in kHz, f1 and f2 are the relaxation 

frequencies of boric acid and magnesium sulfate (also in kHz), and P1, P2 and P3 are non-

dimensional pressure correction factors. Those components are calculated by: 

Boric Acid Contribution 

A1 = 8.86/c x 10 
(0.78pH-5)                                      

dB km
-1

   kHz 
-1 

P1 = 1 

f1 = 2.8 (S/35)
0.5

 10
(4-1245/ɗ)

                             kHz,                                 (3.4) 

where c is the sound speed (m/s), given approximately by: 

c = 1412 + 3.21T + 1.19S + 0.0167D, 

T is the temperature (°C), ɗ = 273 + T, S is the salinity (%o), and D is the depth 

(m). 

MgSO4 Contribution 

A2 = 21.44 S/c (1+0.025T)                          dB km
-1

   kHz 
-1 

P2 = 1 - 1.37 x 10
-4
 D + 6.2 x 10

-9
 D

2  
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f2 = 8.17 x 10
(8-1990/ɗ)

/(1 + 0.0018 (S - 35))                kHz,                     (3.5) 

Pure Water Contribution 

For T Ò 20ÁC, 

A3 = 4.937 x 10
-4
 - 2.59 x 10

-5
 T + 9.11 x 10

-7
 T

2
 - 1.50 x 10

-8
 T

3     
dB km

-1
 kHz 

-2
 

For T > 20°C, 

A3 = 3.964 x 10
-4

 - 1.146 x 10
-5

 T + 1.45 x 10
-7

 T
2
 - 6.5 x 10

-10
 T

3   
dB km

-1
 kHz 

-2 

 P3 = 1 - 3.83 x 10
-5
 D + 4.9 x 10

-10
 D

2
 

 

This is the most recent attenuation model in the last 30 years and in the absence of 

any published limitation in this model we have to take it as the best available knowledge. 

 

3.2 Environmental controls on attenuation 

Based on the Francois-Garrison equation for sound absorption in sea water presented 

earlier, the main factors that affect attenuation are: 

¶ frequency, which depends on the echo sounder and variations within the 

sectors; 

¶ depth, also understood as pressure; 

¶ pH; 

¶ temperature; and 

¶ salinity. 
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As the majority of operations today do not provide temperature and salinity 

structures, assumptions about these water properties have to be made. This creates errors 

in attenuation coefficients, and is the problem addressed in this work. 

Figure 3.2 shows the frequency, temperature and salinity dependence of attenuation 

from 10 to 500 kHz (current frequency range of multi-sector multi-frequency sonars) at   

0 m depth, according to the model developed by Francois and Garrison [1982b]. We can 

also notice in this Figure the frequency range of new MBES: EM122 (11 to 14 kHz), 

EM302 (26 to 34 kHz), EM710 (70 to 100 kHz) and EM2040 (200 to 400 kHz). 

Inspecting these graphics, we conclude that: 

- increasing frequency also increases attenuation. Thus, multi-sector multi-

frequency systems have to apply unique attenuation values for each sector centre 

frequency; 

- attenuation in salt water is much greater than in pure water and it is not a linear 

relationship. Thus salinity variations in coastal waters can have a particularly 

large impact on attenuation; 

- increasing temperature decreases attenuation at all frequencies except in the 

immediate vicinity of relaxation frequencies f1 and f2 (equations 3.4 and 3.5 

above), where attenuation is increased [Ainslie and McColm, 1998].  
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Figure 3.2 - Pure water (S= 0%o and pH=7) and seawater (for S= 35%o and 

pH=8) absorption for three temperatures (0, 10 and 20° C) for frequencies from 10 

to 500 kHz, according to Francois and Garrison model [1982b]. In grey, the 

frequency range of the new MBES: EM122, EM302, EM710 and EM2040 (edited 

from [Francois and Garrison, 1982b]). 

 

Besides that, after the thermocline (which has a significant impact in attenuation 

due to the temperature gradient), when temperature values get more stable, attenuation 

decreases while pressure (depth) increases. Finally, increasing pH slightly increases 

attenuation, but as the typical pH variation in the oceans is small: ñThe surface waters of 

the oceans are slightly alkaline, with an average pH of about 8.2, although this varies 

across the oceans by Ñ 0.3 units because of local, regional and seasonal variationsò 

[Raven et al., 2005]. Consequentially, its impact on overall attenuation is also small. 
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3.3 Example cases 

Some attenuation simulations have been done with data from two quite different 

areas: Hawaii (warm water) and the Arctic (cold water), both collected during the 

summer, as shown in Figures 3.3 and 3.4, respectively.  

 

Figure 3.3 - Hawaii profile collected during the summer 2008 (from 

[http://www.soest.hawaii.edu/HOT_WOCE/ctd.html]). 
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Figure 3.4 - Arctic profile collected during the summer 2011 (from 

[ArcticNet Program 2011]). 

 

As we can notice in Hawaii profile (Figure 3.3), temperature in the sea surface is 

high, about 26° C. There is a pronounced thermocline until around 500 m depth from 

which the temperature gradient decreases substantially, and the profile becomes more 

isothermal.  By contrast, the salinity profile is quite stable, varying only about 1.5 ppt 

(parts per thousand) from sea surface until 5,000 m deep. 

On the other hand, the Arctic profile (Figure 3.4) is quite different: instead of 

temperature, the predominant environmental driver is salinity. Within that profile, there is 

a pronounced halocline, varying from 29 ppt at the sea surface to 35 ppt at the bottom. 

Conversely, temperature has a nearly isothermal profile through the whole water column.  

Some attenuation simulations are presented and analyzed below. 
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- Attenuation and its frequency and pressure dependence 

Figure 3.5 shows the simulation results for three different echo sounder 

frequencies using the Hawaii profile (Figure 3.3): 12kHz (red line, used by multi-sector 

sonars such as EM122), 70kHz (blue line, used by multi-sector sonars such as EM710) 

and 300kHz (green line, used by multi-sector sonars such as EM2040).  

 

Figure 3.5 - Attenuation and its frequency and pressure dependence. 

 

Based on Figure 3.5, we notice that increasing frequency also increases 

attenuation, as commented earlier. It also explains why we have that depth limitation, 

shown in that same Figure, for 70kHz and 300kHz compared to 12kHz.  

The second environmental effect we can notice in this simulation is the pressure: 

after the thermocline (around 500 m deep), when temperature values get more stable, 

attenuation decreases while pressure increases. As shown in Figure 3.6, zoom in part of 
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the 12kHz curve, we can notice that attenuation slightly decreases with pressure at low 

frequencies: it decreases about 0.4 dB/km in almost 3,000 dBar (about 3,000 meters). 

 

Figure 3.6 - Attenuation slightly decreases with pressure at low frequencies 

(12kHz, in that case). 

 

- Attenuation and its pH dependence 

Figures 3.7 through 3.9 show the pH simulation results done for three different 

pH values: 7 (red line), 7.5 (blue line) and 8 (green line), using the Hawaii profile (Figure 

3.3). Each Figure presents the results for a different echo sounder frequency: 12kHz, 

70kHz and 300kHz, respectively. 












































































































































































