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ABSTRACT

While an imperfect attenuation coefficient has no effect on bathymetry accuracy,
it significantly reduces the value of the backscatter strength. As we move towards more
precise calibration of backscatter strength to get additional information about tine nat
of the seafloor, such as bottom type or bottom micro roughness and their respective
lateral and temporal homogeneity, the requirement for a precise attenuation coefficient is
increasingly important. The need for better calibrated acoustic backscaéegtls
estimate is driven by operational needs in environmental monitoring, oil field
developmentand defense applicationsuch as submarine and mine detection. A
particular application used as an example is monitoring seasonal changes in backscatter
onthe floor of a fjord with active turbidity currents.

Most recently, multisector multibeam sonars have made the requirement for
proper attenuation coefficients more pressihigesesystems are capable of operating
simultaneously on different frequenciedten use CW and FM chirp pulses and divide
their transmit fan in multiple sectors and even in multiple swaths, with the purpose of
allowing a sufficient sounding density alongtrack at reasonable vessel speeds, achieving
longer range capability and thuslteing ship time surveyindgdowever, as attenuation is
a frequency, temperature, salinity and pressure dependent environmental control, the
fidelity of the backscatter strengtiutput from theseew multisector systemgotentially
suffer by different waveabsorption in their multiple sectors/swaths, if an incorrect

attenuation is used.



This research reviews the role of attenuation and its proper application, and the
sensitivity of attenuation variation. It then develops an extension to thé@QMIB code
to specifically correct any input multibeam data, accounting for the attenuation applied,
and properly reapplies a new attenuation using a specific Caial specific centre

frequency.
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Chapter 1: INTRODUCTION

As electromagnetic waves such as light, radar and microwaves adenery
rapidly in salt water, they are not able to propagate for significant distances in the ocean.
On the other hand, as acoustic waves suffer a much lower attenuation than
electromagnetic waves in that same environment, it has become the main seolsiog,
identifying and communicating under the ocean surface.

However, the internal structure of the sea and its peculiar upper and lower surface
generate diverse effects upon the acoustic waves created underwater, making the sea a
complex medium for th propagation and study of sound. The quality of the products
generated by most underwater devices depends on a proper identification and

compensation of these undesirable effects upon acoustic waves, such as in the rRew multi

sector sonarshown in Figurd..1.

Figure 1.1- New multi-sector sonars from Kongsberg Company: EM302
(left) and EM710 (right) (from [ http://www.kongsberg.comj).
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If properly compensated, multibearbackscatter data can provide valuable
information about the nature of the seafloor, such as bottom type or bottom micro
roughness and their respectigpatial and temporal homogeneity. As part of that
compensationhowever, frequency and environmedepement attenuation must be
correctly applied.

Rapidly advancing technology has put at the service of contemporary
Hydrography more modern equipment, including new ragdator sonarslhese systems
can produce high resolution bathymetric contour chartsaliegg in detail, the shape of
the seafloor features. Besides that, they can provide 100% seabed coverage, boulders
detection and, if properly compensated, provide additional information about the nature

of the seafloor from backscatter images, as shovamgure 1.2.

F

Figure 1.2- At the top, a high resolution bathymetric map, with 100%
coverage and some detected boulders of different sizes. At the bottom, a backscatter
image of the same area, able to provide information about the nature of the seafloor

(from [Hughes Clarke, 2011c)}

Unlike older single sector systemsesdh new devices are capable of operating

simultaneously on different frequencies, dividing their transmit fan in multiple sectors
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and even in multiple swaths (Figure 1.3), with the purpose of allowing a sufficient and
uniform sounding density alongtrack at reasonable vessel speeds. This helps to ensure
International Hydrographic OrganizatiolHO) compliant target detection. When
combined with FM pulses, which provide longer range capability, it can reduce ship
surveying time.Furthermore, the development of midéctors also provided yaw

stabilization.

f f3
f4
fs
One sector Multi-sectors
One frequency Multi-frequencies

Dual swath
Figure 1.3- Old version of multibeam echo sounder (MBES) with only one
sectorone frequency (left) and new version of MBES with multsectors mult-
frequencies dual swath (right).
Figure 1.4 shows an example of EM302 operating in a Dual Swath Medium

Mode. As we can notice, operating at that mode, the system generates 8 diffdoeat se

each one with a different centre frequency, divided in two swaths.
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Figure 1.4- Multi -sector sonar EM302 operating in a Dual Swath Medium
Mode (from [Hughes Clarke, 2011d)
However, as attenuation is frequendgpendent (also depends tamperature,
salinity, pH and pressuteas discussd in detail later) each sectosuffers with different
wave absorption, with an impact on the backscattered signals and their products.
Attenuation issues can become worse in cases like the one preisehRigdre 1.5: it is
also an EM302, but operating in a Dual Swath, Deep Mode, with 16 different sectors and

16 different frequencies; thus 16 different attenuation values.
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26.9kHz v
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Figure 1.5- Multi -sector sonar EM302 operating in a Dual Swath Deep Mode
(from [Hughes Clarke, 201109}
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While an imperfect attenuation coefficient has no effect on bathymetry accuracy, it
significantly reduces the utility of the backscatter strengdasurementAs we move
towards more precise calibration of backscatter strength t@dgbtional information
about the nature of the seafloor, the requirement for precise attenuation coefficients
becomes increasingly important.

Currently, he need for better calibrated acoustic backscatter strength estimate is
driven by operational needsa oil field developmentenvironmental monitoringand
defense applicationg=or an oil platformto sit on the bottom, we must know the
geotechnical properties of theeafloor Another application is in environmental
monitoring of fishery habitatdNowadgs, as we mandate to preserve offshore resources,
we must know the bottom substrate for certain specieteteymine for example, if it is
a habitat where scallop will live or where clam will buig. some particular cases,
monitoring environmental changes is also mandated. Such change is likely to be very
subtle, requiring very precise calibration.

Finally, two defense applications are with submarines and seabed mines. As
submarines often sit on theotbom, it is critical to know the seabed classification to
guarantee they are not going to damage the hull. Besides that, seafloor characterization is
important to decide the place to launch seabed mines: if the bottom has too many
boulders, we might ndind the mines later; if the bottom has a substrate where a seabed
mine can be buried, it should be avoided also. Thus, in a mine hunting operation, the fact
of not visualizing any mine does not guarantee they do not exist: depending on the
seafloor classication, they might be buriedt is important to highlight thatnaybenot

all these applications have this discrete sensitivityZdB).
5



Multibeam backscatter data represent a major seabed discrimination tool. For
seafloor characterization, howevene of the most significant limitations is the absolute
calibration. There are many components of this and environmental and frequency
controls on the backscatter level are two of the most important ones. As many multibeam
backscatter data are reduced infpetly for attenuation, this thesis examines how
important it is and how consequential it is. It introduces a precise and explicit method to
properly compensate given a CTRConductivityTemperaturddepth) and full
knowledge of specific sector frequenciesed, as long as the absorption coefficient
already applied is preserved. Example cases are given for two different frequencies for

historical data that were imperfectly compensated and the method is demonstrated.



Chapter 2: BOTTOM BACKSCATTER STRENGTH

Bottom backscatter streng{BBS) is defined as the ratio of the backscattered
intensitylg (taken 1meter from the target) to the incident wave intenki{per unit area
per unit solid anglepn the seafloorNormally, it is expressed in decibels and calculated
by the logarithmic formula 10log gl|)). The quotient expresses the ratio of the
backscattered £) and incident () intensities in the linear scale, which is termed as
backscatter agfficient [Urick, 1983.

While we want ¢ and | what we actually measure is(feceived wave intensity
by the transducegnd |, (transmitted wave intensity by the transdugsrassumed to be
known. As we can notice in Figur@.l, the k/l, ratio is a function ofnot justthe
sediment type and grazing angle (B), but also the@ransmitter ( , Q) and receiver (,

Q) beampatterns, ensonified area (dA), the range between the echo sounder and the

seafl oor (R) and t hhe attenuation in the w

Receiver

.\@\r ,
,\f/ Is(0i) 1s(8) =f S (6) b (6,y) b" (B.v) g
! *‘ A

2
lo R*10° “wirspen V10

S (0i) - seabed type and grazing angle
b (6,y) - transmitter beampattern

b’ (6,y) - receiver beampattern

dA - ensonified area

R - range

A o~ attenuation in the water

Figure 2.1- Bottom Backscatter Strength édited from [deMoustier, 2011).

7



Thus, the backscattered energy that returns to the ship (Figure 2.2) dapends
just on the seafloor physical properties themselvasalso on the sonar configuration,
water column propagation and measurement geometry. Once these last geometric and
radiometric modulations on the backscatter intensity are properly reduced, the backscatter
strength (BS) should represent only inherent properties of the seabed, becoming an useful

tool for seafloor classification [Oliveira.J2007].
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Backscatter Strength (dB)
-
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Grazing Angle ©

MBES insonifies seabed BS signatures measured
(angular response curves)

Figure 2.2- Backscatterstrength signatures measured frorMBES data
collected by survey ship €dited from [Hughes Clarkeet al., 1997).
Each sediment type (e.qg., clay, silt, sand, gravel, cobbles, rock, shown in Figure
2.3) has its own physical properties: saturated bulk density, sound speed, spectral
strength, spectral exponent, volume scattering and attenuation, which control the seabed
echo strength. Thus, each sedimeiit present its own backscatter strength signature,

also calledheangular response curve (ARC), as represented in this same Figure.
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Figure 2.3- Each different sediment type (clay, silt, sand, gravel, cobbles,
rock etc) is going to present its own BS signature, also called angulasponsecurve

(edited from [Hughes Clarkeet al., 1997 andHughes Clarke, 2011¢}]

Figure 2.4 represents the seabed type prediction process from measured BS
signatures, after geometriccaradiometric reduction. Those compensated signatures (left
side) are correlated with mathematical mddatkson et al., 198@&Jurves (generated for
the same centre frequencies of acquisition devices), in an effort to provide seafloor

characterizationUnfortunately, BS signatures measurements are imperfect for a variety

of reasons i ncl ud ipattensbndsesafloonsiopee | evel , beam
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Figure 2.4- Seabed type prediction from BS signatures measured, after

geometric and radiometric reduction(edited from [Hughes Clarkeet al., 1997 and
APL, 1994).

Notice also in Figur@.4 (right), which represents model curves (angular response
curves), that distinguishing rough rock from silt is easy due tdaitge backscatter
strength difference (about 25 dB considering the middle asehwocurves). On the
other hand, distinguishing medium sand from coarse sand is hard due to its tiny
backscatter strength difference, requiring us to be very strict in terms/iobrenental
controls, which can generate considerable fluctuations on these angular response curves.

The proposed contribution of this research is developing a proper environmental
reduction for attenuation for those mgector sonarsalthough it can ab be applied to
single sector sonardt may not solve the whole issue of seabed classification from
backscattestrengthimages, which is a big and growing problem when using these new
multi-frequency deviceHowever, this contributiorepresents an efft to minimize tis
component
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Chapter 3: PROPAGATION OF SOUND IN THE WATER

3.1 Transmission loss, spherical spreading and attenuation itself

While travelling throughwater, acoustical waves suffer delay, distortion and
impairment, with a gradual loss itme intensity of the original sound signal, called
transmission los€TL), andconventionallydefined[Urick, 1983]as:

TL=20log R HR (3.1)
whereR s the range andis the attenuation coefficient.

However, considering the twavay travel of the acoustic waves in the water,
transmission loss may also be expressed as:

2TL=40log R + 2R (3.2)

Based on equatiod.2, transmission loss consists of the sum of two parts, one due
to spherical spreading of the signal (40 log R) and the other due to attenuaRYNTRe
first part, spreading loss, is related to the geiwital effect representing the regular
weakening of a sound signal as it spreads outward from the source. Expredseibélg
per total distancetravelled spreading loss varies with range according to the logarithm
of the range.

The second part, atteation, considers the effects of absorption, scattering and
leakage out of sound channels, varying linearly with range and being expressed by
decibels per unit distancés it comprises the conversion of acoustic energy into heat,
attenuation represents thactual loss of acoustic energy to the medium in which

transmission is taking place [Urick, 1983].
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For many years, the constituents of sester responsible for attenuation of sound
werean intriguing mystery for scientists. It was soon clear that tie@uation of sound
in the sea water was considerably higher than the one observed in pure water, and that
phenomenon could not be attributed to scattering, refraction, or other anomalies
assignable to propagation in the natural environm&sntan exampleFigure 3.1 shows
the results of a laboratory measurement, where the attenuation in sea water was
considered around 30 times greater than in distilled water at frequencies between 5 and

50 kHz[Urick, 1983].

10,000 -

1,000

100

a, dB/kyd

1 10 100 1,000 10,000
Frequency, kHz

Figure 3.1- Attenuation coefficients in s@ water and in distilled water from
[Urick, 1983]).

Currently, the attenuation of sound in the sea water is considered to be the sum of
three contributions: those frombsorption inpure waterand from chemical relaxation
processes imagnesium sulfatdMgSQO,) and boric acidB(OH);]. As contributions from
other reactions aremall they were not included [Francois and Garrison, 198D].

Based on thisFrancois and Garrisofil982] developeda general equation for the

12



attenuation of sound in sea watehich applies to all oceanic conditioasd frequencies

from 200 Hz to 1 MHz, was written as:

. . Magnesium
Total _ Boric Acid agnesiu Pure Water
: = o + Sulfate + L
absorption Contribution L Contribution
Contribution
| 00Q (3.9)

where f is the frequency of the sound kHz, f; and f, are the relaxation
frequencies of boric acid and magnesium sulfalso in kHz) andP;, P, andP; are non
dimensional pressure correction factors. Those components are calculated by:

Boric Acid Contribution

A1=8.86/c x 1(¢%78PH9) dB km' kHz*
P]_: 1
fi= 2.8 (S/35)°10** 245/ ) kHz, (34)

wherec is the sound speed (m/s), given approximately by:

c=1412 +3.21T + 1.19S + 0.0167D,

T is the temperatur€C) , d = 273 + Ty, attl Diisghe tebtle
(m).
MgSQ, Contribution
A, = 21.44 S/c (1+0.025T) dB km' kHz™

P,=1-1.37x10°D + 6.2 x 10° D?
13

s al



f,=8.17 x 161 °° 91 % 0.0018 (S 35)) kHz, 35)

Pure Water Contribution

For T O 20AC,

A3=4937x10-259x 10T +9.11 x 10 T2-1.50 x 1 T° dB km' kHz

For T > 20°C,
A3=3.964x10-1.146x 10T + 1.45x 10 T?-6.5 x 10° T® dB km* kHz

P;=1-3.83x10D + 4.9 x 10°D?

This is the most receattenuatiormodel in the last 30 years and in the absence of

any publishedimitation in this model we have to take it as the best available knowledge.

3.2 Environmental controls on attenuation

Based on the FranceGarrison equation for sound absorption in s@&der presented

earlier, the main factors that affect attenuatia ar

1 frequency, which depends on the echo sounder and variations within the

sectors;
9 depth also understood gsessure
T pH;
1 temperature; and

1 salinity.
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As the majority of operations today do not provide temperature and salinity
structures, assumptions about these water properties havenadeeT his creaeserrors
in attenuation coefficientgind isthe problem addressed in this work

Figure 3.2 shows the fregncy, temperature and salinity dependence of attenuation

from 10 to 500 kHz (current frequency range of ms#tctor multifrequencysonars) at

0 m depth, according to the model developed by Francois and Garrisom][1\8&2can
also notice in this Fige the frequency range of new MBES: EM122 (11 to 14 kHz),
EM302 (26 to 34 kHz), EM710 (70 to 100 kHz) and EM2040 (200 to 400 kHz).
Inspecting these graphics, we conclude that:

- increasing frequency also increases attenuation. Thus, -seatbr mult
frequency systems have to apply unique attenuation values for each sector centre
frequency;

- attenuation in salt water is much greater than in pure water and it is not a linear
relationship Thus salinity variations in coastal waters can hawvearticularly
largeimpact on attenuatign

- increasing temperature decreases attenuation at all frequencies except in the
immediate vicinity of relaxation frequencies dnd % (equatios 3.4 and 3.5

above), where attenuation is increapgiahslie and McColm, 1998
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Figure 3.2- Pure water (S= 0% and pH=7) and seawater (for S= 35%and
pH=8) absorption for three temperatures (0, 10 and 20° C) for frequencies from 10
to 500 kHz, according to Francois and Garrison model [1984. In grey, the
frequency range of the newMBES: EM122, EM302, EM710 and EM204(Qedited
from [Francois and Garrison, 1983]).
Besides that, after the thermocline (which hasigmificantimpact in attenuation
due to the temperature gradient), when temperature values get more stable, attenuation
decreases while pressure (depth) increagésally, increasing pH slightly increases
attenuati on, but as the typical pH variati
the oceans are slightly alkaline, with an average pH of about 8.2, althouglaties

across the oceans by N 0.3 wunits because

[Raven et al., 2005]. Consequentially, its impact on overall attenuation is also small.
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3.3Example cases

Some attenuation simulatisinave been done with data from two quite different
areas: Hawaii (warm water) and the Arctic (cold water), both collected during the

summer, as shown in Figurds8and3.4, respectively.
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Figure 3.3- Hawaii profile collected during the summer 200§from
[http://www.soest.hawaii.edu/HOT_WOCE/ctd.html]).
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Figure 3.4- Arctic profile collected during the summer 2011 (from
[ArcticNet Program 2011]).

As we can notice in Hawaii profile (FiguB3), temperature in the sea surface is
high, about 26° C. There is a pronounced thermocline until around 500 m depth from
which the temperature gradient decreases substantially, and the profile becomes more
isothermal. By contrast, the salinity profile isitg stable, varying only about 1.5 ppt
(parts per thousand) from sea surface urn@®06 m deep.

On the other hand, the Arctic profile (Figure 3.4) is quite different: instead of
temperature, thpredominanenvironmentatriveris salinity. Within that gofile, there is
a pronounced halocline, varying from 29 ppt at the sea surface to 35 pptbatttira.
Conversely, temperature has a nearly isothermal profile through the wholeatatan.

Some #enuation simulations are presented and analyzed below.
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- Attenuation and its frequency and pressure dependence

Figure 3.5 shows the simulation results for three different echo sounder
frequencies using the Hawaii profile (Figu8e): 12kHz (red line, used by mulsiector
sonars such as EM122), 70kHz (blue linsed by multsector sonars such as EM710)

and 300kHz (green line, used by mugéictor sonars such as EM2040).

14D T ;

* ATTENUATION COEFFICIENT FOR FREQUENCY=12kHz
120 ->\ * ATTENUATION COEFFICIENT FOR FREQUENCY=70kHz
S‘\ * ATTENUATION COEFFICIENT FOR FREQUENCY=300kHz
100 1" -

2 2
T T
| |

ATTENUATION (dB/km)
I
|

PRESSURE (dBar)

Figure 3.5- Attenuation and its frequency and pressure dependence.

Based on Figure3.5 we notice that increasing frequency also increase
attenuation, as commented earlier. It also explains why we have that depth limitation,
shown in that same Figure, for 70kHz and 300kHz compared to 12kHz.

The second environmental effect we can notice in this simulation is the pressure:
after the thermdme (around 500 m deep), when temperature values get more stable,

attenuation decreases while pressure increases. As shown in Egueom in part of
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the 12kHz curve, we can notice that attenuation slightly decreases with praskwe

frequenciesit decreases about OdB/km in almost 00 dBar (about, 800 meters).

Figure 3.6- Attenuation slightly decreases with pressure at low frequencies
(12kHz, in that case).

- Attenuation and its pH dependence

Figures3.7 through 3.%how the pH simulatiomesults done for three different
pH values: 7 (red line), 7.5 (blue line) and 8 (green line), using the Hawaii profile (Figure
3.3). Each Figure presents the results for a different echo sounder frequency: 12kHz,

70kHz and 300kHz, respectively.
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