

Chair in Ocean Mapping

Current and Future Research Activities Y2002-Y2003

January 2003

John E. Hughes Clarke
Associate Professor, Chair in Ocean Mapping
Ocean Mapping Group
Dept .Geodesy and Geomatics Engineering
University of New Brunswick
P.O. Box 4400
Fredericton, NB, E3B 5A3, CANADA
jhc@omg.unb.ca

Introduction

Overview

This report outlines the status and current and future research directions of the Chair in Ocean Mapping (COM) at the University of New Brunswick (UNB) at the end of the 2002 calendar year. The Chair works within the Ocean Mapping Group which is a part of the Dept. of Geodesy and Geomatics Engineering (GGE) at UNB.

The Ocean Mapping Group is a loose association of researchers at UNB with a common interest in Ocean Mapping. The Chair provides research direction, support staff and infrastructure to support research within the Group.

2002 marked a significant advance in the research capabilities of the Ocean Mapping Group. For the past 10 years the Group's research has been based on working with survey platforms owned and operated by others. This has allowed us to be directly involved in state-of-the-art operational ocean mapping activities worldwide. The fact, however, that these platforms were almost always involved in operational surveys restricted our freedom to undertake experimentation.

Recent Progress

Over the winter 2001-2002, in partnership with the Canadian Hydrographic Service we mobilized the CSL Heron. The Heron is equipped with multibeam, keel mounted sidescan, subbottom profiler, ADCP and underway CTD (MVP-30). She was first mobilized in mid April and was involved in over 100 days of operations in 2002 until being frozen in December. The Heron now is the primary platform for three major thrusts of research that will be investigated using this dedicated suite of instruments.

Improved Oceanographic Imaging for Better Sound Speed Information

As an extension of our interest in the sound speed field in the ocean, we have been developing techniques to monitor water mass boundaries and their migration. Four interests have driven this research:

- 1. better sound speed field monitoring
- 2. offshore boundary delineation
- 3. Estuarine Circulation studies
- 4. Sediment Transport Studies

Using the under way MVP-30 CTD profiling equipment together with a pole mounted ADCP we have undertaken detailed investigations of coastal circulation in both estuarine and inshore areas. These serve the dual purpose of investigating the local oceanography and sedimentology as well as quantifying the degree of local sound speed variability that can be expected.

Precise Repetitive Surveying.

This research direction aims at establishing the practical limits of monitoring of small scale (decimeter level) seabed change (erosion and deposition). To achieve this level of accuracy requires not only high precision in instrumentation, but also excellent integration. The suite of instruments on board the Heron, each in isolation have sufficient range, angle or positional resolution, but the total propagated error of the integrated solution ultimately depends on how well each of these components are linked together.

We have conducted research into both sensor performance studies and automated integration procedures. To test out the integrated results, an ongoing sediment transport project is used to test predicted total achievable accuracy and resolution. In addition repeated reference surface experiments have been conducted through the year to better understand the dynamic (during periods of high sustained acceleration) response of the motion sensors used.

Use of Calibrated Backscatter Measurements to Investigate Coastal Habitat.

In 2001 we started a research thrust in the field of aquaculture site monitoring. This represented a small but industrially relevant application of the use of seabed backscatter data in aid of coastal environmental research. In 2002, this program has continued and been expanded to include the more general field of coastal seabed habitat definition.

Whilst our initial work was primarily involved with the use of Simrad sonar systems (as they are used by the majority of our sponsors), in 2002 we have developed the means to derived measures of the seabed backscatter strength from the RESON family of sonars. This work, driven by the interests of the USGS and NOAA allows us the freedom to work with a much larger variety of sonar systems.

Contents

INTRODUCTION	2
Overview	2
RECENT PROGRESS	
Improved Oceanographic Imaging for Better Sound Speed Information	3
Precise Repetitive Surveying	
Use of Calibrated Backscatter Measurements to Investigate Coastal Habitat	
PERSONNEL	7
FACULTY	
RESEARCH ASSOCIATES AND POST DOCTORAL FELLOWS	7
SUPPORT STAFF	
GRADUATE STUDENTS	
ADJUNCT FACULTY AND ACTIVE COLLABORATORS IN 2002	8
ACTIVE RESEARCH DIRECTIONS	9
SWATH SONAR ANALYSIS SOFTWARE	9
ACOUSTIC IMAGING OF ACQUACULTURE SITES	
COASTAL HABITAT DEFINITION – SCALLOPS AND LOBSTERS	
COASTAL BOUNDARY DELINEATION USING CURRENT PATTERNS—THE MUSQUASH PROPOSED MARINE PROTECTED AREA	
PRECISE MONITORING OF BEDFORM MIGRATION	
SOFTWARE DEVELOPMENT AND FIELD TRIALS IN SUPPORT OF KEEL-MOUNTED SIDESCANS	
PASSAMAQUODDY POCK MARK PROJECT	12
KENNEBECASIS PROJECT – NUMERICAL MODELING OF SOUND SPEED VARIABILITY	12
SEISMIC STRATIGRAPHY OF THE LOWER SAINT JOHN RIVER LAKES	13
BACKSCATTER PROCESSING AND REGISTRATION FROM RESON 8101 SONARS FROM NOAA RAINIER	
LAUNCHES	
OFFSHORE MAPPING OF WEST FLORIDA SHELF – SUPPORT FOR EM1002 SURVEYS	
EVALUATION OF THE INTERNATIONAL HYDROGRAPHIC ORGANIZATION'S STANDARDS FOR	
HYDROGRAPHIC SURVEYS	
INVESTIGATION OF THE ROLE OF HYDROGRAPHY IN MARINE BOUNDARY DELIMITATION	
OPEN ACCESS LEARNING AT SEA	
HYDROGRAPHIC ELEMENTS OF DELINEATING A JURIDICAL CONTINENTAL SHELF UNDER ARTICLE 76 OF	
THE UNITED NATIONS CONVENTION ON THE LAW OF THE SEA	
CAPACITY DEVELOPMENT IN COASTAL COMMUNITIES TO LINK SCIENCE AND LOCAL KNOWLEDGE	
EDUCATION AND TRAINING OPTIONS	
MULTIBEAM COURSES	
GGE MARINE SURVEY COURSES :	
UNDERGRADUATE:	
GGE3353 Imaging and Mapping II, Acoustic Imaging Systems	
GGE4042 Kinematic Positioning	
GGE5013 Tides and Water Levels	
GGE5083 Hydrographic Field Operations	
GRADUATE:	
GGE6023 Multibeam Sonar.	
GGE6022 Special Topics in Ocean Mapping	
GGE6021 Special Studies in Hydro graphy	
GGE5543-6543 Marine Policy, Law and Administration	
FUNDING AND FINANCIAL COMMITMENTS	20
-	

SPONSORS	20
OTHER SOURCES OF FUNDING (CURRENT)	21
ACOUSTIC IMAGING IN SUPPORT OF SALMONID MARICULTURE SITE ASSESSMENT AND NAUTICAL C SURVEYS	
DEVELOPMENT AND TESTING OF IMPROVED FIELD TECHNIQUES AND SOFTWARE FOR FINE-SCALE	
MONITORING OF THE SEABED	21
EM1000 SURVEYS IN THE WESTERN GULF OF MEXICO.	21
HABITAT MAPPING OF GRAND MANAN COASTAL WATERS	
SWATH SONAR TRAINING AND FIELD INSTRUCTION	21
SYNSWATH – EDUCATIONAL SOFTWARE FOR SWATH SONAR SYSTEMS	21
EXTRACTION OF BACKSCATTER INFORMATION FROM US GOVERNMENT CONTRACT SURVEYS	22
COSTA-CANADA, CONTINENTAL SLOPE ST ABILITY	
PRECISE MAPPING AND MONITORING OF SEABED CHANGE	
OPTIMAL INTEGRATION OF GEODETIC TECHNIQUES FOR POSITIONING AND NAVIGATION	22
HARDWARE CAPABILITIES	23
EQUIPMENT TO SUPPORT FIELD RESEARCH PROGRAMS	23
HERON FIELD OPERATIONS	
COMPUTING HARDWARE	
PUBLICATIONS:	26
2002	26

Personnel

Faculty

John E. Hughes Clarke Associate Professor, Chair in Ocean Mapping, GGE

Swath Sonar Software Development,

Sediment Transport

David Wells Professor Emeritus, GGE

Hydrography, Geodesy, Uncertainty management

Y.C. Lee Professor, GGE

Geographic Information Systems,

Spatial Data Infrastructure

Sue Nichols Associate Professor, GGE

Coastal and Marine Cadastral

Marcelo Santos Associate Professor, GGE

Kinematic Positioning, Geodesy

Karl Butler Assistant Professor, Dept. Geology

Exploration Geophysics

Dave Monahan Director of Ocean Mapping, CHS

Law of the Sea

Research Associates and PostDoctoral Fellows

Dr. Susan Haigh Contract Researcher

Numerical Modeling of Coastal Circulation

Support Staff

Shawn Woo System Manager
Anya Duxfield Research Assistant
Capt. Loren Fleet Skipper, CSL Heron

Joan Henry Accounting (until June 2002)
Tracey Hawco Accounting (after Sept. 2002)

Graduate Students

Graham Nickerson LAM M.Sc.Eng 1997-2002 Doug Cartwright JHC MEng 2000-

Enrique Silva DEW MEng 2000-2002 Ted Byrne JHC MEng 2000-Sam Ng'ang'a SN PhD 2000-Sarah Cochrane SN MEng 2000-SN Michael Sutherland PhD 2000-Garret Duffy JHC PhD 2001-Jonathan Beaudoin JHC M.Sc.Eng 2001-Jennifer Coppola JHC M.Sc.Eng 2002 -

7

Karen Cove	MS	M.Sc.Eng 2002 -
Jim Bradford	JHC	MEng 2002 -
Andy Muir	JHC	MEng 2002 -
Lionel Manteigas	DEW	MEng 2002 -
John Fleming	DEW	MEng 2002 -

Adjunct Faculty and Active Collaborators in 2002

Dr. Christian deMoustier Honorary Research Associate,

Scripps Institute of Oceanography

Dr. Larry Mayer Adjunct Professor,

University of New Hampshire

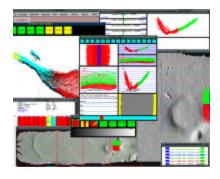
Dr. Gary Melvin Adjunct Professor,

DFO, St. Andrews Biological Station

Russell Parrot Research Scientist

GSC – Atlantic, BIO

Dr. David Wildish Senior Research Scientist


DFO St. Andrews Biological Station

Dr. Peter Lawton Senior Research Scientist

DFO St. Andrews Bioligical Station

Active Research Directions

The following short overviews explain the researchers, sources of funding and describe the type of research currently active under the umbrella of the Chair in Ocean Mapping:

Swath Sonar Analysis Software

Hughes Clarke Chair Funding

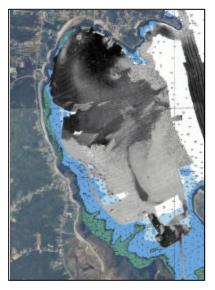
In order to support the core swath sonar research that is active within the Ocean Mapping Group, a UNIX based processing and analysis package (SwathEd) is constantly maintained and enhanced.

Software developments have continued, the most noticeable advancements in the 2002 year include.

- ?? Seismic section project software (fence diagrams)
- ?? MVP 30 profile manipulation software (cross-sections etc..).
- ?? Upgrading of patch test tools to handle dual head sensors independently.
- ?? Automated motion correlated residual analysis (wobbles)
- ?? Reson snippet support
- ?? Combining multi-phase ADCP tidal current observations

Acoustic Imaging of Acquaculture Sites

Hughes Clarke, and Wildish (DFO-SABS)
DFO Subvention Grant funding


Continuing our studies in the Letang estuary, the progress of organic enrichment at the Limekiln salmon farm site was investigated in May and September.

We have been comparing the relative value of EM3000 backscatter strength measurements

derived from narrow beams with 200 kHz backscatter derived from a conventional sidescan stave. Whilst initial results with the sidescan staves in 2001 seemed promising, it is clear from the 2002 data that, as the acoustic signature of the fish swim bladders grows with age, it masks the signature of the organically enriched sediments beneath the cages, rendering the results unusable.

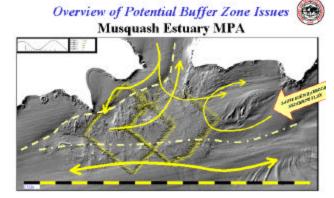
Coastal Habitat Definition –Scallops and Lobsters

Coppola, Lawton (DFO-SABS) and Hughes Clarke DFO and NBAF funding

Building on our work in coastal habitat surveys in the vicinity of aquaculture sites, two research projects were undertaken off Grand Manan. The first in Long Island Sound examines the interaction between lobster habitat and aquaculture. The second in Duck Island Sound examines the potential interaction between an existing inshore scallop fishery and proposed new aquaculture site developments.

The surveys were conducted using the C.S.L. Heron EM3000 system allow us to map 300 kHz acoustic

backscatter as a tool for delineation of surficial sediments.


Coastal Boundary Delineation using current patterns— the Musquash Proposed Marine Protected Area

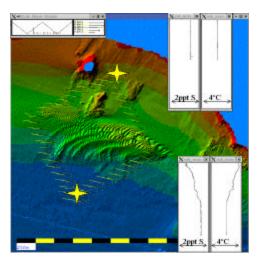
Byrne, Nichols, Ng'ang'a, Sutherland and Cockburn GEIODE HSS # 55

In order to better understand the technological implication of modern submarine survey methods to boundaries, a case study was implemented as part of the proposed Marine

Protected Area (MPA) in the Musquash Estuary. The Musquash Estuary MPA, has conflicting jurisdictional control from Federal, Provincial Municipal and Private stakeholders.

At the end of 2001, ADCP diamonds surveys were conducted over the Musquash outer boundary. This data, analyzed in 2002, was able for the first time to examine the

reason for the presence of a sharp sediment boundary off the MPA mouth, allowing a greater understanding of the physical oceanographic processes at work


As part of this study, an offshore buffer zone was recognized, outside of which water did not exchange significantly with the estuary over a single tidal cycle. The seabed sediment boundary directly corresponds to a shear zone developed on the end of the ebb tide.

Precise Monitoring of Bedform Migration

Duffy, Parrott (GSC) and Hughes Clarke

GSC and NSERC funding.

As part of the increased focus on precise resurvey capability, a test bed has been established over a highly dynamic sand wave field off Mispec Bay.

Building on the 2 years of GSC operations on the Mispec Bay sands wave field, an experiment was initiated over the these mobile bedform fields where different motion sensors and RTK integrations would be tested at monthly intervals for the summer period of 2002. In all, 6 surveys were conducted at monthly intervals over the summer period.

In addition 3.5 kHz subbottom was deployed to examine the internal structure of the dune field and 2 ADCP tidal cycle diamonds were implemented to isolate the eddy development centred over the tear shaped body. Simultaneously

MVP-30 CTD profiles were conducted to examine the evolution of the oceanography over the tidal cycle allowing us to monitor the location of the Saint John River plume.

Software Development and Field Trials in Support of Keel-Mounted Sidescans.

Hughes Clarke, Crutchlow (CHS) CHS funding

In 2002, sidescan staves were purchased by the CHS for all regions in preparation for

Convells Creek
Lower Masquash Island

Across 95° 56° 300 kile

Sidestan Blow)

Wet-Grass Surveying
multibeam v. sidescan

The declining efficiency of multibeam some

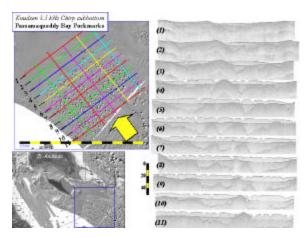
Some

Residency may up the Enach

implementation in shallow water single beam operations. Remaining barriers that needed to be solved included:

- ?? proper export of the Knudsen sidescan telegrams as XTF format.
- ?? Integration with Hypack logging.

Trials for the CHS were conducted in September 2002 in Grand Bay. OMG has developed new processing software for proper radiometric and geometric reduction of the

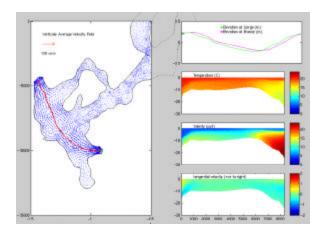

Knudsen binary format sidescan trace data.

The KSS was used for the first time in the upper Saint John river estuary in depths between 15 and 1m under the keel. It was found that 100m single side ranges are viable for depths > 5 m but shallower than this, thermocline effects in the lower estuary, and Lloyds mirror artifacts prevented operational use at range over 50m.

Passamaquoddy Pock Mark Project.

Duxfield, Hughes Clarke, Wildish (DFO-SABS) and Parrot (GSC-A) Chair Funding

In 1992, the first EM1000 survey performed in Canada took place in Passamaquoddy Bay. The dataset at the time was compromised by a number of sensor integration problems. Using newly developed analysis software, the data is being reprocessed as part of a project to better understand the evolution of these enigmatic seabed features.

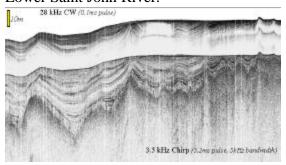

Beginning in may of 2002, the St. Andrews harbour and approaches survey was completed as an instrument test trial (see Hydrocamp results below). This repeated transit sections run by the Creed 10 years earlier providing higher resolution data on the linear trains of smaller pockmarks developed SE of Navy Island. This is a region where the highest density of pockmarks has been developed.

By extending the 1992 surveys into shallow water, for the first time the outcrops of the buried horizon that appears to nucleate the pockmarks was mapped. Clear sub-glacial landforms (eskers) were identified both exposed at the seabed and identified in the subsurface from dense 3.5 kHz profiling.

Kennebecasis Project – Numerical Modeling of Sound Speed Variability

Haigh and Hughes Clarke CHS and Chair funding

As a continuation of our study of the dynamics of the lower Saint John river estuary in support of sound speed variability, in 2002, the QUODDY 3-D numerical model was implemented using full baroclinic extensions. This allows us to realistically predict the estuarine circulation, and most particularly the


saline intrusions that are so critical to sound speed prediction.

Further multibeam mapping of the ebb flow erosion scar and sections of the upper Kennebecasis was completed. This allows us tp improve the bathymetric model used as a framework for the numerical model.

Seismic Stratigraphy of the Lower Saint John River Lakes

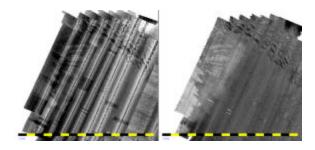
Hughes Clarke, Chair Funding

As part of developing software for and testing out the performance of small hull-mounted chirped subbottom profilers, we have initiated a seismic stratigraphic program investigating the sedimentary history of the sediments in the lakes associated with the Lower Saint John River.

We use a standard 28 kHz source together with a single 3.5 kHz element. For lacustrine sediments we can achieve up to 15m penetration at 28 kHz and over 60m at 3.5 kHz.

The systems serve as a training tool for undergraduates exposing them to the planning and processing of a single-channel

seismic project.

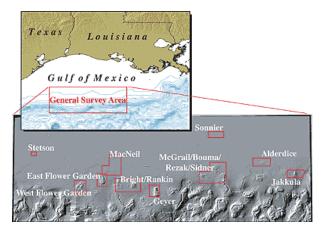

Software tools to perform basic enhancement (first arrival detection, filtering, stacking) and to project sections into plane and make fence diagrams have been developed as an extension to the SwathEd package.

Backscatter Processing and Registration from RESON 8101 Sonars from NOAA Rainier Launches

Beaudoin, Hughes Clarke and Gardner (USGS) USGS Funding

USGS continental shelf mapping programs over the past 7 years have employed multibeam sonars for both bathymetry and surficial backscatter measurements

In 2002, the RESON 8101 data reduction algorithms were implemented for Alaskan and New Hampshire survey data. The project has now been extended to include the 8125 sonars and the new snippet data formats. Adaptation of existing



algorithims designed originally for Simrad beam trace data (a snippet concept) has been completed.

Offshore mapping of West Florida Shelf – Support for EM1002 surveys

Hughes Clarke, Beaudoin, Cartwright, Duxfield, Coppola USGS Funding

As part of a long standing collaborative research arrangement between the US Geological Survey and the OMG, the OMG provides planning advice, field calibration, processing tools and data analysis support for USGS continental shelf mapping programs.

In 2002, as part of MMS investigations in the Gulf of Mexico, the OMG provided field calibration and software support for two simultaneous surveys in the eastern and western gulf.

The Eastern Gulf surveys involved integration of an EM3000D and an EM1000 (RV Moana Wave). In the Western Gulf , EM1000 surveys were conducted from RV Ocean Surveyor under the direction of OMG graduate

students.

Evaluation of the International Hydrographic Organization's Standards for

Hydrographic Surveys

Monahan, Wells

Standards for hydrographic surveys are issued by the International Hydrographic Organization to its Member States. These were primarily created for inshore, safety-of-navigation surveys, but do have some application to deeper water. The UN Guidelines for states claiming a Continental Shelf under the United Nations Convention on Law of the Sea (UNCLOS) require that claims include "a priori or a posteriori estimates of random and systematic errors" using the IHO standard.

We are investigating the magnitude of horizontal uncertainty in the location of boundary elements using data that meet the standard, comparing them to other standards, devising ways in which users of the data can be apprised of its uncertainty, and recommending additions to the IHO standard for use in deep water.

Investigation of the role of Hydrography in Marine Boundary Delimitation Monahan, Nichols, Hughes Clarke, Sutherland

UNCLOS gives jurisdiction over portions of the sea floor to a Coastal State; it does not, and cannot, regulate how the area is further subdivided within the territory of the Coastal State. How marine boundaries are recorded and shown within a Coastal State's new oceanic regions is of rising concern to hydrography.

We have investigated the role of standard navigation charts in portraying boundaries and designed a data base of marine boundaries. Applied research has included investigating the relationship between boundaries as defined by regulation and natural boundaries on the seafloor and in the water column for the Musquash Marine Protected Area.

Open Access Learning at Sea.

Wells, Richer (College of Extended Learning), Dare, Santos, Monahan

New communications technologies allow formal education to be delivered to students remotely. Few are as remote today as hydrographers on extended offshore surveys are, with very limited access to telephone and Internet. They require self-contained, comprehensive, course material that has most of the benefits of an on-line course without the need for connectivity.

Subject Matter Experts from GGE have teamed with technical specialists from the UNB College of Extended Learning, to produce design standards and a macro-design. A module "Horizontal and Vertical Datums and their Transformations" is at an advanced stage of completion.

Hydrographic elements of delineating a juridical Continental Shelf under Article 76 of the United Nations Convention on the Law of the Sea Monahan, Wells

This project has analyzed UNCLOS Article 76 and the Guidelines produced by the Commission on the Limits of the Continental Shelf (CLCS) and determined which elements of the formula can be deemed hydrographic. It has described the hydrographic measurements necessary and determined the uncertainty achievable and desirable.

Morphology of the sea floor at depths critical to defining a juridical Continental Shelf

Monahan, van de Poll

The Outer Limit to a Juridical Continental Shelf is measured from a feature called the Foot of the Slope and may be constrained by measurements based on the 2500m isobath.

Both lie on the Continental Slope, a geomorphic province characterized by very low gradients. Small uncertainties in measuring to a surface of low gradient can translate into large horizontal uncertainty in the location of the feature and the boundary based on it. By studying the gross morphology of Continental Slopes we hope to establish some uncertainty estimates for the Outer Limit.

Measurements of seafloor gradient at 2500m for the entire ocean have shown that half the world's 2500 m contour lies on sea floor with gradients less than 2.09 degrees. Contours which meet IHO specifications over this gradient could have a horizontal uncertainty of almost 3500m.

Capacity Development in Coastal Communities to link Science and Local Knowledge

Nichols, Sutherland, Cockburn, and Ng'ang'a, Fisheries and Oceans Canada/SSHRC:

This project is part of "Linking Science and Local Knowledge", one of three funded nodes of the Ocean Management Research Network (OMRN). Based out of the Coastal Studies Group at Simon Fraser University, the project has three areas of focus: community capacity building, marine conservation, and economic diversification. OMG's involvement includes: capacity building in mapping, positioning, and coastal boundary determination; governance models for coastal management and marine protected areas; and development of a model marine property rights information system. http://www.sfu.ca/coastalstudies/linking/about.htm

Education and Training Options

Multibeam Courses

The international training course organized by the Ocean Mapping Group gave 4 more courses in the 2002 year in:

Burlington Ontario, Canada in May
Sydney, NSW, Australia in August
Lafayette, LA, USA, in October and
Gillileje, Denmark in November.

The course student body is typically 40 to 50 students per course in order to meet the continued growth in demand for this course. Latest result of research within the Ocean Mapping Group are used to update the course material to ensure that it keeps up with the latest trends in swath sonar surveying. We rely heavily on the benevolence of agencies for whom we conduct trials of their operational systems. As long as no restrictions are placed on these data, they are used as type examples in the course material.

GGE Marine Survey courses :

In order to ensure that the student body within the GGE dept. benefits from the research activities of the Ocean Mapping Group, a series of courses are provided that pass on both first principles and latest research results to the undergraduate and graduate student body.

These courses include:

UNDERGRADUATE:

GGE3353 Imaging and Mapping II, Acoustic Imaging Systems

Hughes Clarke

Theory of, and operational issues in acoustic marine surveying. http://www.omg.unb.ca/GGE/SE_3353.html

GGE4042 Kinematic Positioning

Santos and Wells

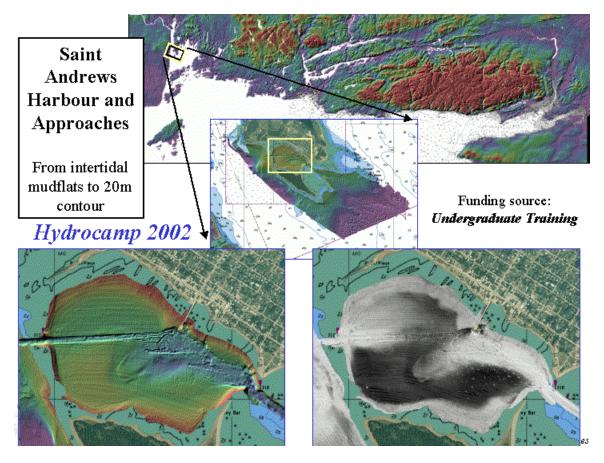
Marine, Terrestrial and Airborne dynamic navigational theory and methods.

GGE5072 Hydrographic Data Management

Wells

Principles and issues of data management in marine applications

GGE5013 Tides and Water Levels


Wells

Theory of tides and the reduction of sounding data to a stable vertical datum.

GGE5083 Hydrographic Field Operations

Hughes Clarke

Planning, execution and data processing for a coastal marine field program http://www.omg.unb.ca/GGE/SE_5083.html

GRADUATE:

GGE6023 Multibeam Sonar

Hughes Clarke

Research Topics on Swath Sonar Systems. http://www.omg.unb.ca/GGE/SE_6023.html

GGE6022 Special Topics in Ocean Mapping

Hughes Clarke

Research Topics in Ocean Mapping (Sediment Characterisation, Coastal Physical Oceanographic Phenomena, Marine Sedimentation, Environmental Monitoring).

GGE6021 Special Studies in Hydrography
Wells
Research Topics in Aspects of Hydrography

GGE5543-6543 Marine Policy, Law and Administration Nichols

Funding and Financial Commitments

Funding for the Chair in Ocean Mapping comes from two sources:

- ?? Sponsorship funds
- ?? Other research organisations

To maintain the Chair technical and administrative staffing at the current levels and to support the necessary computing facilities and travel to international meetings, an annual budget of ~C\$165k is required. To date, this level of support continues to be met or exceeded. The continuation of this level of support, however, will require ongoing commitment from the sponsors of the Chair. That in turn requires that the Chair can show continued relevance and usefulness toward the marine survey community.

Sponsors

The Chair in Ocean Mapping at UNB can only survive as long as there is external funding. The Chair, originally set up as an NSERC Industrial Research Chair, originally survived by the combination of Industrial Sponsorship together with matching funds from NSERC. In 1996, on the renewal of the Chair the matching funds were withdrawn as planned. From that point on the Chair has been fully dependent on external funding (from Canadian or International, Commercial or Government organisations). At this point there are 8 sponsors.

Current Sponsoring organisations

	t Sponsoring organisations	
1.	Canadian Hydrographic Service	1991 -
2.	CARIS	1991 -
3.	Simrad Mesotech	1995 -
4.	U.S. Geological Survey	1996 -
5.	U.S. Naval Research Laboratory	1996 -
6.	U.S. Naval Oceanographic Office	1997 -
7.	State University of New York	1998 -
8.	University of New Hampshire	2000 -

Active sponsors have access to all current research results developed with Chair funding (at a source code level) and are free to call upon the chair personnel to provide informal advice on operational survey issues. In addition, the chair actively seeks advice on new relevant research directions. Graduate student research topics are driven by Chair needs and access to operational survey data for research purposes is routinely derived from sponsor-owned or chartered vessels and equipment. The continued success of the chair is thus clearly critically reliant on the continued relevance and leadership of Chair research. As this document outlines, new focused research directions are actively being pursued based on current sponsorship suggestions.

Other Sources of Funding (Current)

Whilst the sponsorship funding is the prime source of support for the core Chair research program, all the researchers working with the Chair have been successful in attracting funding from other research agencies. This funding allows us to complement Chair research, which is by design very focused on immediately relevant problems, with research into more long term and esoteric problems.

Projects names (details of which are included in the list of current research) and level of funding include:

Acoustic imaging in support of salmonid mariculture site assessment and nautical charting surveys

DFO Subvention Grant Program Hughes Clarke, C\$15,000

Development and testing of improved field techniques and software for fine-scale monitoring of the seabed

Geological Survey of Canada, Atlantic -23420-02-M308 Hughes Clarke, C\$15,000

EM1000 surveys in the Western Gulf of Mexico

U.S. Geological Survey Hughes Clarke, US\$280,000

Habitat Mapping of Grand Manan Coastal Waters

DFO- St. Andrews

Hughes Clarke, C\$12,000

Swath Sonar Training and Field Instruction

Kongsberg Simrad

Hughes Clarke US\$8,000

SynSwath - Educational Software for Swath Sonar Systems

Royal Danish Administration of Navigation and Hydrography

Hughes Clarke C\$7,500

Extraction of backscatter information from US Government Contract Surveys

U.S. Geological Survey

Hughes Clarke, C\$45,000 pa

COSTA-CANADA, continental slope stability

NSERC Collaborative Research Grant,

Hughes Clarke, sub contract - C\$31,000 pa.

Precise Mapping and Monitoring of Seabed Change.

NSERC Research Grant

Hughes Clarke C\$28,000 pa

Optimal Integration of Geodetic Techniques for Positioning and Navigation.

NSERC Research Grant

Santos C\$16,000 pa.

Hardware Capabilities

Equipment to Support Field Research Programs

Trimble 5700 suite: base station, radio link and two rovers capable of 10Hz RTK **Ashtech Z12** suite: base station, radio link and one rover capable of 1Hz RTK **Trimble AG-132** combined GPS and Racal Landstar or Coastguard beacon receiver.

Knudsen 320B/P 2 x 200 kHz keel-mounted sidescan staves.

Knudsen 320M 28 kHz and 3.5 kHz (320M on loan from Knudsen Engineering and 3.5 kHz transducer on loan from GSC-A)

Datasonics CAP6000 Chirp subbottom profiler (on loan from the GSC)

RDI 600 kHz Monitor ADCP with Winriver software.

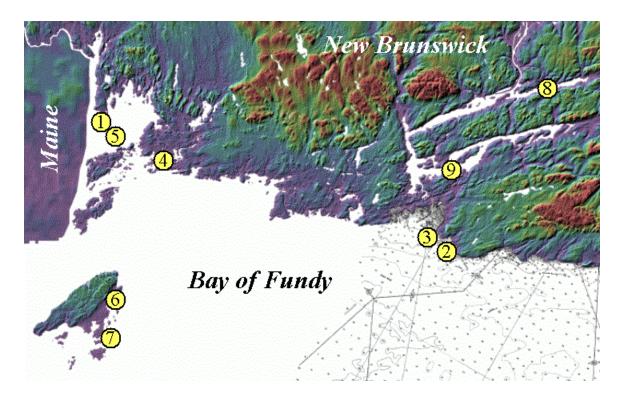
Sutron Model 8200 data logger (on loan from CHS)

for tidal measurements interfaced to:

- pressure gauge and
- AMASS encoder

Simrad EM3000S 300 kHz multibeam sonar system

Seatex MRU-6 Orientation and heading sensor


Ocean Sensors OS500-APV – autonomous winching CTD.

Applied Microsystems Limited SVP16 Temp., sound speed and depth logger.

Brooke MVP-30 towbody, overboarding Sheave with AML Smart CTD (25 Hz) integrated with a Valeport SK172 winch.

Heron Field Operations

In April 2002, the CSL Heron became fully operational. She was trucked to Saint John Coastguard base for launching. For the 2002 field season she was based at the Saint John Marina in Grand Bay, just above the Reversing Falls.

The following field programs were undertaken in 2002 using the Heron:

Location	Funding
Saint Andrews Harbour Survey	Undergraduate Training
Mispec Bay Dunefield Investigations	NSERC
Blacks Point Offshore Disposal Site Monitoring	GSC-Atlantic
Limekiln Bay Aquaculture site imaging	DFO Subvention
Passamaquoddy Bay, Pock Marks	Chair
Long Island Sound, Grand Manan	DFO
Duck Island Sound, Grand Manan	DFO
Seismic Stratigraphy, Lower Saint John Lakes	NSERC
Kennebecasis Bay, Estuarine Oceanography	Chair
	Location Saint Andrews Harbour Survey Mispec Bay Dunefield Investigations Blacks Point Offshore Disposal Site Monitoring Limekiln Bay Aquaculture site imaging Passamaquoddy Bay, Pock Marks Long Island Sound, Grand Manan Duck Island Sound, Grand Manan Seismic Stratigraphy, Lower Saint John Lakes Kennebecasis Bay, Estuarine Oceanography

Computing Hardware

In order to conduct OMG research, a mixture of Unix and Windows platforms are maintained. For the core swath sonar data processing applications (SwathEd), the UNIX platforms are the prime tool. SwathEd is currently supported on SGI, DEC, Solaris or Linux. For historical reasons SGI is the most used hardware platform. SUN operability is maintained to support sponsors who use that hardware (SUNY, C&C) and DEC is supported for CHS operations.

To take advantage of the cheap PC hardware, Linux support was introduced in 2000. It is intended that Linux be the main operating system for SwathEd in the future. Recent purchases have been Linux hardware only.

```
SGI-Irix 6.5
       3 – SGI Extremes
                                                 (clownfish, stereo and southern)
       4 - SGI 02's
                                                 (solomon, cyclops, bliss and blacks)
       1 – SGI Indy
                                                 (indian)
Compaq/DEC
       1 DEC Alpha
                                                 (alpha)
Solaris
       1 – SUN Sparc20
                                                 (coral – EM3000)
       1 – SUN Sparc 2
                                                 (atlantic)
       1 –SUN Sparc 2
                                                 (hudson)
Linux
       2 Dell Optiplex 400 MHz
                                                 (baffin, dipper)
      4 Dell Optiplex 800 MHz
                                                 (heron1, heron2, stcroix, letang)
       1 Dell Dimension 1 GHz
                                                 (bocabec)
       1 Dell Dimension 1.6 GHz
                                                 (chamcook)
                                                 (oakbay)
       1 IBM laptop (A30)
Windows
       2 Dell Optiplex 300 MHz
                                                 (erie, huron)
       2 Dell Optiplex 450 MHz
                                                 (gee, louise)
                                                 (hydro1)
       1 Dell Optiplex 600 MHz
       2 IBM laptops (A20, A21)
                                                 (chance, kennet)
       1 IBM workstation (1.8 GHz)
                                                 (for fledermaus)
Plotters
      HP 650
      HP 2500
      Lexmark 1200dpi
      Lexmark II 1200 dpi
SCSI Disks (on SGI's and DECs)
       1x 50 Gb, 3 x 36 Gb, 4 x 18 Gb, various 9's, 4's, and 2's......
              (and now innumerable 20-100Gb IDE disks on the various PC's).
Tapes Drives
      DLT
       Exabyte
      DAT
```

Publications:

2002

Journal Articles

- 1. Lastras, G., Canals, M., Hughes Clarke, J.E., Moreno, A., De Batist, M., Masson, D.G. and Cochonat, P., 2002, Seafloor imagery from the BIG'95 debris flow, western Mediterranean: **Geology**, v.30, no10., p.871-874.
- 2. Monahan, Dave and Rob van de Poll, 2002 Measured gradients of the seafloor at depths of 2500m and their possible influence on the outer limit of juridical Continental Shelves. **International Hydrographic Review**, V 3, no 3 (new series), pp 72-76.
- 3. Monahan, Dave and Dave E Wells, 2002. The use of the International Hydrographic Organization's "Standards for Hydrographic Surveys" as a measure of depth accuracy in Continental Shelf determinations. **International Hydrographic Review**, v3, no 1 (new series), pp 59-67.
- 4. Monahan, Dave, 2002. Variable errors and fixed boundaries: the role of deep echo-sounding in the United Nations Convention on Law of the Sea (UNCLOS). **The Hydrographic Journal**, no 105, July 2002, pp 11-16.
- 5. Urgules, R., Locat, J., Schmitt, T. and Hughes Clarke, J., 2002, The July 1996 flood deposit in the Saguenay Fjord, Quebec, Canada: Implications for sources of spatial and temporal backscatter variations: **Marine Geology**, v.184, p.41-60.
- 6. Wells, DE and Dave Monahan, 2002. IHO S44 Standards for Hydrographic Surveys and the variety of requirements for bathymetric data. **The Hydrographic Journal**, No 104, April 2002, pp 9-16.

Conference Proceedings

- 1. Beaudoin, J., Hughes Clarke, J.E., van den Ameele, E. and Gardner, J., 2002: Geometric and radiometric correctrion of multibeam backscatter derived from Reson 8101 systems: Canadian Hydrographic Conference Proceedings CDROM.
- 2. Byrne, T., Hughes Clarke, J.E., Nichols, S. and M-I, Buzeta, 2002, The delineation of the seaward limits of a Marine Protected Area using non-terrestrial (submarine) boundaries The Musquash MPA: Canadian Hydrographic Conference Proceedings CDROM.
- 3. Cartwright, D. and Hughes Clarke, J.E., 2002, Multibeam surveys of the Frazer River Delta, coping with an extreme refraction environment: **Canadian Hydrographic Conference** Proceedings CDROM.
- 4. Hughes Clarke, J.E., Wildish, D. and Duxfield, A., 2002, Acoustic Imaging of Salmonid Mariculture Sites: **Canadian Hydrographic Conference** Proceedings CDROM.
- 5. Monahan, Dave and Sue Nichols, 2002. Hydrography's Role in Marine Boundary Delimitation. **Proceedings Canadian Hydrographic** Conference 2002, Toronto Un-paginated CD-ROM
- 6. Monahan, Dave, Dave E Wells and Rob Hare, 2002. Providing Clients with Usable Uncertainty Indices. **Proceedings Canadian Hydrographic Conference** 2002, Toronto Un-paginated CD-ROM.
- 7. McLaughlin, F, C Gobeil, D Monahan and M Chadwick, eds, 2002. Proceedings of the First Annual National Science Workshop, Department of Fisheries and Oceans. **Canadian Technical Report of Fisheries and Aquatic Sciences** #2403, 191pp.
- 8. Monahan, Dave 2002. Altimetry and the Law of the Sea. Workshop on Global Bathymetry for Oceanography, Geophysics, and Climatology, Scripps Institution of Oceanography, October, 2002

- 9. Monahan, Dave and Sue Nichols, 2002. Hydrography's Role in Marine Boundary Delimitation. **Hydro International** v6, n9, p7-9.
- 10. Wells, Dave, Joss Richer, Kyle Purves, Ian Allen, Peter Dare, Denis Wiesenburg, Dave Dodd, Stephan Howden, Semme Dijkstra, Lee Alexander, Dave Monahan, Andre Godin, Jimmy Chance, 2002. Open Access Learning at Sea. Proceedings Canadian Hydrographic Conference 2002, Toronto Un-paginated CD-ROM.

Technical Reports

- Beaudoin J.D., Gardner J.V., Hughes Clarke J.E., 2002, RV Ocean Surveyor Cruise O1-02-Gm, Bathymetry and Acoustic Backscatter of Selected Areas of the Outer Continental Shelf, Northwestern Gulf of Mexico, June 8, through June 28, 2002, Iberia, LA to Iberia, LA: USGS Open-File Report OF02-410.
- Monahan, D, 2002. Claiming a juridical Continental Shelf under Article 76 of the United Nations Convention on the Law of the Sea (UNCLOS). Department of Geodesy and Geomatics Engineering GGE Technical Report no 217, University of New Brunswick, Fredericton, New Brunswick, Canada, 132pp.
- 3. Monahan, Dave, John Hughes Clarke, Doug Cartwright and Maria-Ines Buzeta, 2002. Hydrography and ocean science in Marine Protected Areas: Lessons from Musquash. Abstracts Annual **DFO Science Workshop**, Burlington, November, 2002