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Abstract

The JPEG 2000 image compression standard is used to compress water column imagery data from Kongsberg
Simrad multibeam echosounders (MBES) through integration of the JasPer software library into the Ocean
Mapping Group (OMG) MBES processing software suite. An examination of data acquired over a sunken wreck
demonstrates that lossy compression rates as high as 20:1 can be achieved with minimal signal distortion and
little degradation of water column imagery quality. The data are also examined from an application specific
viewpoint, that of wreck detection and measurement, with promising results even at compression levels exceeding
20:1. Though the methods used in this work were applied in post-processing, they are applicable in real-time. For
exploration campaigns where sounding and water column imagery data are acquired continuously (e.g. CCGS
Amundsen, NOAAS Okeanos Explorer), high compression rates may prove attractive as they would allow for
acquisition of potentially useful water column information without the demanding storage requirements that
currently limit the ability, or the desire, to record such data.

1 Introduction

In addition to measuring bathymetry and seafloor reflectivity, multibeam echosounders (mbes) can potentially
record water column reflectivity measurements. These data have applications ranging from improved determination
of the least-depth over wrecks [11, 12] to the detection of underwater gas plumes [9]. Figure 1 provides examples
of water column reflectivity measurements being used to image the hull and mast of a sunken wreck. The reader is
directed to [11] for more explanation of water column imaging geometry and interpretation. Despite the potential
value of water column reflectivity measurements, the media storage requirements can be prohibitive and many mbes

users do not routinely record water column reflectivities. A ten-fold increase in data storage requirements is not
uncommon, this is especially problematic in shallow water applications as the higher repetition rates lead to data
rates of several gigabytes per hour.

Data compression provides a potential solution to the problem of data storage, however, commonly used lossless
data compression techniques yield only modest compression rates. For example, the Lempel-Ziv compression algo-
rithm [18], which is used by many common desktop compression software packages, compresses the water column
data examined in this work by approximately 25%, i.e. compressed data will be 75% of the uncompressed data
size. Recent work has demonstrated that wavelet based lossy compression methods, in particular the JPEG 2000
standard, can be applied to acoustic signals with high compression ratios (20:1) and minimal signal distortion [6].
In the case of [6], seismic data (recorded in SEGY format) were converted to JPEG 2000 format for two reasons: (1)
the wavelet compression techniques significantly reduced file sizes, and (2) the multi-resolution and random access
capabilities of the JPEG 2000 standard increased responsiveness during digital access and improved accessibility
to end-users. As will be shown, the approach taken by [6] is applicable, with slight modifications, for mbes water
column imagery.

2 Background

2.1 Data Compression with Wavelets

Much like the Fourier transform uses a summation of sinusoidal functions to represent a signal, the wavelet transform
allows for a representation of a signal as a superposition of wavelet basis functions. As wavelets basis functions can
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Figure 1: Sample water column imagery of a sunken wreck created by mapping acoustic backscattering strength
(in decibels) to a greyscale image. The cartoon in the upper left depicts the imaging geometry associated with a
mbes (in this case, a Kongsberg EM3002 [13]), with the triangular wedge B highlighting the portion of the water
column and seafloor that is insonified during transmission of a single ping. In this example, the survey vessel passes
over the longitudinal axis of the wreck from stern to bow. Examining the data from the central portion of the
sector over several hundred pings collected along-track, it is possible to create a vertical section of the water column
reflectivity as shown in Panel A. Panel A presents water column reflectivity in a manner similar to a single beam
echosounder (sbes), however, the advantage of the wide mapping swath of a mbes is shown in Panel B in which it
is clear that the survey vessel passed to the side of the wreck. Panel C shows a time-angle image from a single ping
in which each row represents the return signal time-series for a receiver beam pointing in the direction associated
with the angle on the y-axis. Angle is relative to the vertical with port side angles being negative. Note the curved
appearance of the mast in the image, this is due to plotting polar coordinates (time and angle) in the Cartesian
coordinate system of the image. In the Kongsberg recording format, data are only recorded for a short time beyond
the bottom detection for each beam. Time-series records from inner beams are thus typically shorter than those
for outer beams, this explains the apparent data gap for the majority of the right half of Panel C.
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be localized in time, they allow for temporal discrimination of a signal’s frequency content, this being their main
advantage over non-windowed Fourier methods. This property allows for better representation of non-stationary
signals and signals with discontinuities and/or sharp peaks [10].

Discrete orthogonal wavelet basis functions are generated through dilation and translation of a mother function

ψa,b(t) = |a|−
1

2ψ

(

t− b

a

)

(1)

for a one-dimensional variable, t with the variables a and b serving to dilate and translate the mother wavelet
function [4]. The mother wavelet function must satisfy the condition

∫

dx ψ(x) = 0 (2)

which is to say that it must be oscillatory in nature [7]. It is also desirable for the mother function to decrease
rapidly for t → ±∞; this second requirement is necessary for the time/space localization properties of the wavelet
transform [16].

The wavelet transformation of a signal is defined as the inner product of a function f(t) and a wavelet function
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t−b
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)
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in which the parameters a,b allow for tuning of frequency and space/time localization. A continuous wavelet
transformation (cwt) results when both a and b are allowed to range over R (with the exception that a 6= 0).
A discrete wavelet transformation (dwt), which is that most commonly used in image compression, results from
restricting a and b to Z such that a = am

0
, b = nb0a

m
0

, where a0 > 0, b0 > 0, n ∈ Z. In this case, the transform is
computed as

(Twav
m,n f) = a

−
m

2

0

∫

dt f(t) ψ(a−m
0

t− nb0) (4)

and the dependence of b on a interlocks the two parameters in such a manner that narrow wavelets are translated by
small amounts and wider wavelets are translated by larger amounts. This ensures that the entire time (or spatial)
range is covered during the transformation [7].

It is possible to chose ψ, a and b such that the ψa,b provide an orthonormal basis for L2(Z), allowing for a
multi-resolution analysis of a signal in which the signal is split into a pyramidal set of approximation signals where
the resolution differs by a factor of two between each level. The difference between each level of resolution is
encoded as coefficients of orthogonal ”mother” wavelets that are dilated by factors of 2 (and translated by integer
amounts) for each level of resolution [15]. In addition to the use of a mother wavelet to encode the incremental
amount of information between resolution levels, a ”father” wavelet, or scaling function, is used to approximate the
signal with a downsampled version of the signal from the previous level. The downsampled approximation function
is iteratively examined at each resolution level to yield (a) a further downsampled approximation signal, and (b)
the incremental amount of detail information required to rebuild the previous resolution level’s signal. The process
may be repeated with the approximation signal being split into low and high frequency components until there is
no more information to be extracted from the signal.

Retaining the mother wavelet coefficients throughout the iterative procedure yields as many wavelet coefficients
as there were original data samples in the original signal (thus a multiresolution analysis is O(n) in terms of storage
requirements). The dwt is implemented in practice through digital filters and the required number of operations
at the first iteration of the pyramidal reduction is O(n); the number of operations decreases by a factor of two at
each stage due to downsampling, thus the total number of operations required is O(2n).

A multiresolution analysis provides a wavelet transformation mechanism that is efficient in terms of processing
speed and memory requirements. What makes this particular technique powerful for data compression is the fact
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that the DWT of a signal can result in significant ”energy compaction” [16] as the wavelet coefficients may allow for
representation of a signal in a more redundant form in which many, or even the majority, of the wavelet coefficients
may be of negligible amplitude. Figure 2 provides an example of the energy compaction properties of the wavelet
transformation.

2.2 JPEG 2000 Image Compression Standard

The JPEG 2000 image compression standard was developed to improve upon deficiencies in the previous JPEG
standard and to implement additional functionality. A significant difference between the previous standard and
the new standard is the move from discrete cosine transformation (dct) based coding to wavelet/subband coding
techniques as in [4]. Coding can be done losslessly with biorthogonal 5/3 wavelets reversible transforms, as described
in [5]. Lossless coding is implemented with a nonreversible and real-to-real 9/7 transform as proposed in [4]. After
the wavelet transform, coefficients are quantized and encoded using bit-plane coding techniques and entropy coded
with a binary arithmetic coder [1] as described by [17]. Further details regarding the standard and its implementation
can be found in [1].

Software is available for encoding and decoding imagery using the JPEG 2000 standard, many open source
applications use the JasPer software library [2]. This work relies on the JasPer library as well, in particular the
functions which allow for encoding and decoding of data streams in computer memory (as opposed to conversion of
imagery files written to non-volatile memory). Documentation for the JasPer software library can be found in [3].

3 Methods

3.1 Data

The data set examined in this work consists of water column imagery collected by a Kongsberg Simrad EM3002 mbes

system by the CCGS Otter Bay in March-April of 2006. The EM3002 [13] operational frequency is approximately
300 kHz and can vary from this in the dual head mode of operation. The transmitter beam (single sector) covers an
angular sector of approximately 130◦ with an along-track beam width of 1.5◦. Receiver beams are 1.5◦ at broadside;
as the receiver beams are electronically steered, the beam widths grow up to approximately 3◦ towards the edge
of the covered sector. Though the system can provide 256 bottom detection solutions in its High Definition (HD)
mode of operation, water column reflectivity measurements are only provided for 160 receiver channels. Data were
acquired in a series of twelve passes over a 54 m long wreck in approximately 25 m water depth. Figure 3 shows
a photograph of the vessel prior to being sunk in 1991, note that this is the same data set examined in [12]. The
uppermost section of the mast was only fully imaged in one of the twelve passes over the wreck and this examination
is limited to this single pass.

Raw water column data are stored as 8-bit signed characters and represent a time-series of echo levels in units
proportional to decibels (8-bit signed integers represent a dynamic range of -64 to 63 dB, with 1 digital number
= 0.5 dB). Note that positive backscattering values, though physically impossible, are accommodated in this
representation to account for user-applied gains during acquisition. It should be noted that the time-series data are
downsampled by the acquisition system to approximately the same range resolution as the pulse width [14].

3.2 Implementation

The imaging geometry associated with 2D seismic profiling (as in the work of [6]) is particularly suited to rep-
resentation in a 2D image as there is a direct and intuitive logical mapping of 2D seismic data to a 2D image:
each record (which consists of a time-series of backscattered echo intensities) is associated with a single downward
looking beam, the data from which occupies a column in an image. As long as the digitizer sampling rate and the
sampling interval (range) does not vary, then each record can be stored as a column in an image whose height would
remain constant throughout the image. In the case of mbes water column data, each record consists of several
time-series sub-records (one per physical receiver beam, for a total of 160 beams for an EM3002). One could follow
the method of [6] and create a 2D image for each receiver channel (much like Panel A of Figure 1), however, the
length of a given receiver beam’s time-series can vary with depth over the course of a survey line (and so can the
sampling rate). Furthermore, this approach does not lend itself to real-time compression.

In this work, images were created on a ping-by-ping basis by assembling the receiver sub-records into a time-angle
image like Panel C of Figure 1 and then compressing the image using the JPEG 2000 standard. Pre-processing
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Figure 2: Sample time-angle water column imagery of a sunken wreck demonstrating the energy compaction prop-
erties associated with the wavelet transform using the Daubechies-4 wavelet [7]. In this example, a 2D dwt was
applied to the raw time-angle water column image A above. The resulting wavelet coefficients were sorted in ascend-
ing order based on their absolute value. Coefficients below the 95th percentile were set to zero and the remaining
large amplitude coefficients were used to reconstruct the image via an inverse dwt, resulting in the processed image
B. Comparing the raw and processed imagery, it is clear that the energy compaction properties associated with
the dwt allow for a reasonable reconstruction of water column imagery from only a small set (in this case 5%)
of the largest amplitude wavelet coefficients. In other words, a significant portion of the wavelet coefficients are
redundant; this can lead to significant gains in image coding efficiency during the quantization and entropy coding
steps of wavelet image compression [8].
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Figure 3: Photograph of the MV G.B. Church prior to being purposely sunk to create an artificial reef [12].

steps included joining the fragmented water column network packets into a single datagram [14], this is done during
file format conversion between the Kongsberg and omg file formats. Data from each beam are then inserted as a
row in a 2D greyscale image in Portable Graymap (pgm) format. The width of the image is chosen to be large
enough to accommodate the beam with the longest time-series; beams with shorter time-series are zero-padded. As
the pgm format only supports unsigned integers, the signed 8-bit raw values are shifted positively by 128 to change
the dynamic range to match that of an unsigned 8-bit integer (this includes zero-padded elements). Note that data
remain logarithmically compressed at this stage.

Once the PGM formatted memory buffer is filled for a given ping, the JasPer library routines are used to convert
it to JPEG 2000 format (JP2), the data are then written out to disk along with the Kongsberg Water Column
datagram header [14]. Variable parameters at this point are limited to the choice of compression ratio (e.g. 10:1),
though there are many other parameters to be investigated which may improve performance [3].

4 Results

Water column records were examined for a series of 170 swath records over the wreck, Figure 4 shows the raw image
which is a subset of the image shown in Panel A of Figure 1. Lossless and lossy compressions were both attempted.

4.1 Lossless Compression

The primary result of interest for the lossless compression was the attainable compression factor. For the 170
pings over the wreck, achieved compression ratios ranged from 2.51:1 to 2.68:1 when comparing the file sizes
associated with the pgm and JP2 formatted images. These are misleading results as the pgm image sizes are
much larger than required to store the raw data due to the zero-padding involved during the pre-processing stage.
The effective compression ratio, derived from comparing the JP2 formatted file to the raw data size prior to zero-
padding, was much more modest with ratios ranging from 1.41:1 to 1.51:1 over the 170 pings. Though modest, the
results are still an improvement over standard compression algorithms mentioned earlier: the lossless compression,
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despite the penalty involved with zero-padding, packed file sizes down to 68% of the original file size on average
as compared to 75% as achieved with the Lempel-Ziv compression algorithm [18]. It is expected that the effective
compression ratio will grow with the angular sector of the system. For example, the increased angular sector of
other Kongsberg sounders (e.g. EM710, EM302, EM122) would have an associated increase in the maximum time-
series length relative to the shorter time-series at nadir. This would require additional zero-padding during the
pre-processing stage where the time-angle image is constructed from the raw time-series data, leading to poorer
effective compression ratios with lossless compression.

Improved performance can be achieved if one is willing to sacrifice data beyond the closest point of approach to
the seafloor and limit the length of each receiver’s time-series to the mininum of the set of beams in each ping. In
this case, the compression ratios of 2.5:1 are readily achieved. For users interested in water column echoes only,
this is a feasible option as the echogram is often contaminated by sidelobe interference beyond the closest point of
approach to the seafloor. This option is not acceptable, however, for users interested in the echogram at or near
the seabed across the whole swath.

4.2 Lossy Compression

The JPEG 2000 compression standard can be used for lossy compression. Evaluation of lossy compression of water
column reflectivity data is difficult as there are many potential uses for such information. Hydrographers enjoy the
improved confidence in least-depth determination over wrecks and other submerged hazards, thus they may prize
geometric fidelity over radiometric fidelity. On the other hand, oceanographers imaging underwater hydro-thermal
vents or water column processes such as internal waves may care more about image quality as the signal-to-noise
ratio of their signal of interest can be much lower. Each application will likely have its own tolerance for the artifacts
that can be introduced with lossy compression methods.

The JasPer implementation of the JPEG 2000 standard allows one to select a target compression rate, this being
the reciprocal of a compression ratio (e.g. a compression rate of 0.1 corresponds to a compression ratio of 10:1).
In this work, compression ratios ranging from 10:1 to 100:1 were applied with the goal being to ascertain at which
point the lossy compression would introduce artifacts that might be considered unacceptable (this is inherently a
subjective evaluation). A subset of these are shown in figures 5 through 8 (an uncompressed image is shown in
Figure 4 for reference). It should be noted that the compression ratios reflect the compression ratio between the
raw pgm size and compressed JP2 size. The effective compression ratio, which is computed by comparing the
compressed JP2 image size to the total size of the raw data prior to zero padding, can differ by nearly a factor
of two from the desired compression ratio. For example, a desired 10:1 compression ratio results in an effective
compression ratio of 5:1. All compression ratios discussed below are desired compression ratios.

Examining the images of the wreck, it is clear that compression ratios of 10:1 and 20:1 yield imagery that is
largely free of artifacts and suffers little loss of resolution. Most of the main deck rigging, masts and booms are still
clearly identifiable and suffer little degradation of resolution. Higher compression ratios introduce more artifacts
and degrade the quality of the imagery though the wreck is still identifiable as a wreck, even at 80:1 compression.

Quantitative metrics, such as correlation and rms have been computed to provide an objective measure of
lossy compression performance. Each of these metrics was computed for each swath with the sample-by-sample
differences between the raw time-angle data and compressed time-angle data being examined as a set. These values
were computed for each swath and then averaged over the set of 170 swaths in which the wreck was examined.
The mean for each metric is plotted against the compression ratio in Figures 9 and 10. Both curves indicate that
the majority of the loss in image fidelity occurs with compression ratios less than 20:1 with the gradient lessening
for higher compression ratios. In other words, it is less costly to move from a 30:1 to 40:1 compression ratio
than it is to move from 10:1 to 20:1. It is interesting to note that imagery remained nearly 100% correlated for
a compression ratios of less than 5:1 (99.9941% correlated for 5:1). This low compression ratio could provide a
reasonable alternative to the lossless method, which performed only marginally better than standard compression
algorithms (recall that the desired ratio of 5:1 would result in an effective compression ratio of 2.5:1).

4.3 Application Specific Evaluation: Wreck Detection and Measurement

For hydrographic applications where safety of navigation is critical, real-time mbes bottom detection algorithms
do not reliably track small and dispersed targets such as masts and rigging, especially when these targets are small
with respect to the transmit and receive beamwidth of the mbes [12]. In these situations, water column reflectivity
measurements can potentially provide the hydrographic surveyor with increased confidence that the least-depth
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Figure 4: Raw water column image of sunken wreck (uncompressed).

Figure 5: Compressed water column image of sunken wreck (10:1 compression ratio).
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Figure 6: Compressed water column image of sunken wreck (20:1 compression ratio).

Figure 7: Compressed water column image of sunken wreck (40:1 compression ratio).
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Figure 8: Compressed water column image of sunken wreck (80:1 compression ratio).
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Figure 9: Mean image correlation plotted versus compression ratio.
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Figure 10: Mean RMS plotted versus compression ratio.

over sunken hazards has been detected. Lossy compression of water column data may, however, detract from the
ability to (a) detect the hazard, and (b) to improve upon the least-depth estimates provided by the real-time bottom
tracking algorithms.

As seen in the previous section, detecting hazards such as shipwrecks is still possible, even with high compres-
sion factors (see Figure 8). In this section, the impact of lossy compression on shipwreck and mast-detection is
investigated using the wreck data examined thus far in this work, specifically the swath in which the fore mast had
the highest signal-to-noise ratio (see panels B and C of Figure 1). The echo time-series from the 49 receiver beams
that imaged the fore mast and upper deck of the vessel were examined, Figure 11 shows the echo time-series for the
receiver beam that imaged the shoallest point of the mast along with the time-angle image of the wreck for ease of
inter-comparison.

The ability to track mid-water targets with compressed data is assessed by first applying simple detection
algorithms to the set of 49 receiver beam time-series from the raw data and comparing the results after applying
the same detection algorithm to the data after compression has been applied. The discrepancies between the pre-
compression and post-compression results serves as an application specific quantitative indicator of the impact of
lossy compression, in this case, the ability to detect mid-water targets. For example, a simple thresholding technique
can be used to detect targets in the receiver time-series. Figure 12 plots raw and compressed data from the same
least-depth receive beam data shown in Figure 11. In this case, a simple threshold detection algorithm would appear
to be relatively unaffected by lossy compression artifacts until very high compression rates are used (a threshold of
-30dB was used). On the other hand, the change in slope and amplitude of the leading edge of the first return in
the compressed data of Figure 12 makes a thresholding algorithm sensitive to the choice of threshold value. For this
reason, three detection algorithms were tested to better understand how variations in a seemingly simple algorithm
can make an application more or less susceptible to the artifacts associated with lossy compression. The three
approaches are listed below.

• Thresholding: find the first sample whose amplitude exceeds a threshold of -30 dB

• Peak: find the peak return in the 50 sample window following the sample that first exceeds the threshold

• Weighted-Mean-Time: find the peak as in the last method, then compute the weighted mean time in a 50
sample window centered on the peak
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Figure 11: Time-angle image of the wreck (top) with the echo strength time-series from the top-of-mast receiver
beam (bottom). The horizontal dashed line shows the location of the receiver beam’s time-series in the time-angle
image, vertical dashed lines point out the common reception times associated with various points of interest.
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Figure 12: Time-series of received signal intensities for the top-of-mast receiver beam showing the effects of increasing
levels of lossy compression. The raw (uncompressed) data are plotted as the solid line throughout the sequence of
plots. Compressed data are plotted as dashed lines, with the compression factor varying by a factor of two between
each plot (the subset of compression factors shown is the same as those used in the qualitative examination of the
wreck, see Figures 5 to 8). Note the increasing loss of detail (and noise) with increasing compression rates. The red
dash-dotted line indicates the signal threshold level of -30dB that is used in the various target detection algorithms.
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The output from the raw detections consists of the range to the target, as detected in the raw time-series for
each of the 49 receiver beams. Applying the same detection algorithm to compressed data yields a set of 49
range detections which differ slightly from the raw detections. Figure 13 plots the results of the Thresholding and
Weighted-Mean-Time algorithms for the 49 receiver beams that imaged the upper deck and fore mast with varying
levels of compression. Graphically evaluating the results from the figure alone, it is apparent that lossy compression
artifacts distort the geometry of the deck and mast with increasing compression levels, however, the deck and mast
are still successfully detected even at high compression levels.

Though the upper deck and fore mast are successfully detected for all compression ratios examined in Figure 13,
the detections for the compressed time-series will invariably differ from the baseline detections, even if only by small
amounts. The difference in detected range, referred to here as the range detection anomaly, is shown as a series of
2D histograms for each of the detection methods in figures 14 through 16. In these figures, the compression ratio
ranges from 1 to 100 along the horizontal axis and each vertical column shows the distribution of range detection
anomalies for the 49 receiver beams that imaged the mast and deck. Positive values indicate an overshoot in the
detected range, i.e. over-predicting the range to the mast and/or upper deck. The mean and standard deviation,
both as a function of compression factor, are plotted in figures 17 and 18 for all three 2D histograms.

The Thresholding and Peak algorithm detections can vary from the baseline detections significantly, even at low
compression levels and applications that rely on these methods should proceed with caution or at least examine the
sensitivity of their application to lossy compression. Spurious mistrackings of 1 m or more can occur with small
targets and/or high sidelobe responses at or near the threshold level. An example of this is a mid water target
tracked in Figure 13(b), located approximately 3.5 m to the right and 4 m above the lower left grid corner. The
target is partially detected in the 10:1 data but is filtered in the images that have undergone higher compression
factors and is thus not detected. This leads to a systematic range detection anomaly for the few beams that imaged
the mid-water target in the raw imagery, these appear as positive outliers of 1.3 m in the 2D histogram of Figure
14. In this case, the raw detections are likely due to a sidelobe response from the mast and the compressed data
are thus more correct in the sense that they are tracking the mainlobe response of the deck and not a mid-water
sidelobe response from the mast.

Compared to the first two algorithms, the Weighted-Mean-Time algorithm appears to be much more resilient
to the effects of lossy compression artifacts. Though the edges, slopes, highs and lows of the signals may become
distorted by lossy compression, the center of mass of the signals remains relatively unaffected to the point that the
Weighted-Mean-Time algorithm consistently outperforms the other two algorithms. Furthermore, the performance
of the algorithm worsens only slightly with increasing compression. For the purposes of range measurement, this
type of algorithm would appear to be the most applicable when using lossy compression methods. The sophistication
of the other two algorithms could have been improved to yield better or comparable results, but the point of this
exercise was not to develop perfect detection algorithms or to judge the best of the three. Instead, the point
was to examine the circumstances under which common approaches to simple signal processing problems could be
hindered by the introduction of artifacts due to lossy compression. In this case, it is evident that some approaches
to target detection are more susceptible to uncertainty than others after undergoing signal compression, however,
their performances are remarkably good considering the gains that are made in addressing the issue of storage
requirements for water column data: the uncertainty in target detection and range measurement is a small price to
pay for lossy compression methods that would allow for near continuous logging of this type of data.

5 Conclusion

The problem of compressing water column imagery from a mbes was examined using wavelet/subband coding
techniques as implemented by the JPEG 2000 image compression standard, more specifically the JasPer implemen-
tation of the standard. Lossless methods provided a modest improvement over traditional compression algorithms,
yielding effective compression ratios of approximately 1.5:1. Lossy methods proved more promising with effective
compression ratios of 5:1 and 10:1 yielding very little loss of resolution or introduction of artifacts. It has been
demonstrated that target recognition and detection is still possible, even with high compression ratios. Caution
should be exercised however when applying lossy compression methods to water column imagery data as application
specific objectives may vary in their tolerance of artifacts that are introduced with the use of lossy compression
methods. Testing procedures should be implemented on an application-by-application basis to help objectively
determine a balance between compression rate and signal distortion.

For exploration campaigns where sounding and water column imagery data are acquired opportunistically (e.g.
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(a) (b)

(c) (d)

(e) (f)

Figure 13: Subsets of Figure 1(b) showing raw (a and b) and compressed (c through f) imagery of the mast and deck
with results from the Thresholding and Weighted-Mean-Time target detection algorithms plotted as blue diamonds
and blue squares, respectively (results from the Peak detection are omitted for clarity). Image (a) provides an
uncluttered reference image of the uncompressed data with image (b) being the same but with target detection
results plotted as well. Images (c), (d), (e) and (f) show the same image after application of compression, with
ratios ranging from 10:1, 20:1, 40:1 and 80:1, respectively. Target detection points in these four images result from
applying the detection algorithms to the compressed time-series data stored in the rows of the JP2 image files.
Note that the deck and mast is detected even at the highest compression level (80:1, image f) despite the poor
quality of the imagery. Red grid lines are plotted at 5m intervals for scale.
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Figure 14: 2D histogram of range detection anomalies for the Thresholding target detection algorithm.
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Figure 15: 2D histogram of range detection anomalies for the Peak target detection algorithm.
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Figure 16: 2D histogram of range detection anomalies for the Weighted-Mean-Time target detection algorithm.
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Figure 17: Mean range detection anomalies for the Threshold (T), Peak (P) and Weighted-Mean-Time (W) detection
algorithms as a function of compression factor. The water column datagram data are downsampled to approximately
10 cm resolution; the mean detection anomaly is less than 1 sample on average for all three detection methods.
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Figure 18: Standard deviation (1-sigma) of range detection anomalies for the Threshold (T), Peak (P) and Weighted-
Mean-Time (W) detection algorithms as a function of compression factor. Recall that the water column data are
downsampled to 10 cm resolution; thus the detection methods introduce 1 to 5 samples of uncertainty (1-sigma).
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CCGS Amundsen, NOAAS Okeanos Explorer), high compression rates may be attractive as they would permit
acquisition of potentially useful water column information without the associated storage requirements. Much like
a sounding data from an mbes, the time series of reflectivities from a single receiver beam is seldom examined in
isolation, nor is the image from a single swath examined without the context of neighbouring swaths. Data from
neighbouring receiver beams and swaths could provide context that may help the human interpreter see through
artifacts associated with high compression rates.

6 Future Work

Continual improvement, refinement and testing of the data model is foreseen in the near future, specifically in-
vestigation of ideal data representation (logarithmic or linear) and pre-preprocessing of the data (e.g. inter-sector
normalization for multi-sector systems). Alternate data organization methods, e.g. tiling, will be investigated to aid
in reducing the performance penalties associated with zero-padding the time-angle imagery. Once stable, additional
efforts will focus on the integration of these compression procedures into acquisition and/or processing software
(this has already been done for the omg SwathEd software suite).
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