
CHAPTER 1 – INTRODUCTION 
 
1.1 Introduction 
 
 The responsible management of our oceans has become national policy and is 

generating a variety of initiatives to properly implement this policy.  One such initiative 

in Atlantic Canada  is the Eastern Scotian Shelf Integrated Management (ESSIM) project.  

It is a regionally driven, collaborative planning process for addressing conservation, 

multiple use and sustainable development of the ocean environment. Key interests in the 

ESSIM area include fisheries, oil and gas development, maritime defense, submarine 

cables, science, recreation and tourism, and marine conservation [Canada,2004]. Key to 

this effort is the underlying scientific information. Modern Geographic Information 

Systems (GIS) provide a fundamental tool to display and analyze information in support 

of the decision making process for policy makers, scientists and field operatives. The 

confluence of various mapping, processing and display technologies has created a 

revolution in data management, moving from a series of point data sets into a regional 

coverage mapping at progressively higher levels of resolution. The use of digital cameras 

underwater provides extremely high-resolution images of ocean features. Digital video 

provides a context to tie the high-resolution photos to the lower resolution acoustic 

imagery. Geographically registered mosaics of video frames are useful in GIS to bridge 

the resolution gap between digital photo and acoustic images. These mosaics, in effect, 

provide the meso-scale mapping in support of seafloor activities. As part of the ESSIM 

initiative, the Department of Fisheries and Oceans (DFO) has embarked upon a habitat 

mapping program which has been in part responsible for the development of a Towed 
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Camera system known as TOWCAM. This system carries two cameras, one a high 

resolution digital still camera, the other a digital video camera. 

 The Canadian Navy has implemented a surveillance program in key strategic 

waterways which includes the detailed mapping and identification of objects on the 

seafloor. The primary mapping tools are acoustic, while divers and Remotely Operated 

Vehicles (ROV) perform identification tasks. Video mapping has the potential to more 

efficiently map and identify objects in highly cluttered areas. The  navy is actively 

pursuing the use of enhanced video technology for seafloor surveillance. One initiative of 

note is the development of a Laser Underwater Camera Enhancement (LUCIE) that could 

be incorporated as a mapping tool [Fournier, 2003]. 

 The motivation behind this report is based upon the naval requirement for 

efficient object mapping in highly cluttered environments. This requirement was vividly 

emphasized through personal experience during the 1998 Swiss Air 111 crash recovery 

operations, where acoustic mapping provided the sole regional overview. A video mosaic 

of the main crash site would have greatly aided recovery and investigation efforts. 

Subsequent to this activity, the author became aware of TOWCAM which was in its early 

development stages. Although not designed as a mapping system, it appeared that most of 

the basic instrumentation was incorporated in the system to support the generation of 

mosaics. When the TOWCAM Team was approached about the possibility of mosaicing 

the video, there was initially a moderate level of interest shown, which has since grown 

to a very keen interest.  
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1.2 Report Contents 

 
This report consists of five chapters: Introduction, Background, Video Mosaicing, 

Creating Mosaics From TOWCAM, Conclusions and Future Directions.  A series of 

appendices follow the chapters to describe the TOWCAM System Offsets, examine 

attitude effects on output mosaic sections and provide C program code and shell scripts 

written in support of this report.  

 

Figure 1-1 An idealised  image of TOWCAM in operation. Image produced and provided by Kelly 
Bentham, DFO Canada. 

1.2.1  Chapter 2 – Background 

 Chapter 2 consists of three main subsections: Seabed Surveillance and 

Intervention Operations, Early TOWCAM Experience and the LUCIE System. In the 

1980s Canada’s Navy began a transformation from a single-threat focus on Anti-

Submarine Warfare towards a multi-threat combat capable force. This broadening of 

focus created a requirement for seafloor surveillance and intervention capabilities in 
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support of Mine Counter-measures (MCM) Operations. This requirement was formally 

assigned to the navy in the 1994 Defense White Paper [Canada, 1994]. Since then an 

acoustic mapping of strategic national waterways has been implemented. Expertise in 

marine survey and GIS operations is under development and has been used in response to 

a variety of operational scenarios beyond the scope of normal warfare operations to 

include urgent response to civil emergencies and counter narcotic operations. The civil 

responses are almost always a cooperative effort involving other government departments 

or agencies and often including special assistance from academic institutions. Beyond the 

success of these individual operations there has been a nurturing of the spirit of 

cooperation and trust between these agencies that has resulted in a symbiotic relationship 

that greatly enhances the routine programs and capabilities of the individual 

organizations.  

TOWCAM provides an example of a project that, despite limited resources, 

demonstrated superior effectiveness in accomplishing a task to that of highly resourced 

systems designed specifically for that mission. The LUCIE system significantly extends 

visual range underwater and thus has the potential of covering far wider swaths. Wider 

swaths improve the coverage rate of a mapping system and allow for a larger overlap 

between parallel tracks, thereby improving confidence of complete area coverage.  

 
1.2.2 Chapter 3 – Video Mosaicing Considerations 

 There are many examples of the use of video and photography in the creation of 

mosaics. Traditional photogrammetric techniques have been ported to the digital 

environment. The widespread availability of inexpensive digital cameras has generated 

great interest in the creation of panoramic mosaics for recreational purposes as well as in 
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archeological research. Significant effort has been undertaken in the field of machine 

vision, particularly in support of robotic systems. The Iraq war has highlighted the use of 

Unmanned Airborne Vehicles (UAVs) in a surveillance role. Video from these UAVs is 

mosaiced to form maps for the support of operations. A variety of underwater video 

systems have been developed from which video mosaicing techniques have been applied. 

This chapter briefly describes the implementation of various video mosaicing techniques 

and issues associated with correction of systemic errors and distortions in video data. The 

chapter concludes with the description of the technique to be implemented for the 

creation of video mosaics using the TOWCAM as it is presently configured. 

 
1.2.3 Chapter 4 – Creating Video Mosaics From TOWCAM 

Chapter 4 first describes the TOWCAM vehicle and instrumentation as well as its 

data logging scheme. A description of the work of the author  that details steps, software 

integration and development then follows to describe: the creation of the mosaic 

including preparation of the data, selection and extraction of video frames and support 

data, correction of distortions, projection of the image frame to a plane, the combination 

of the projected frames into a mosaic, and finally the export of the mosaic for use in a 

Geographic Information System (GIS) such as ARCGIS.  

 

1.2.4 Chapter 5 – Conclusions and Future Directions 

Chapter 5 concludes the report with a description of system enhancements that 

could improve the mosaic quality of the TOWCAM system and describes the potential 

future application of this work. 
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CHAPTER 2 – BACKGROUND 
 
2.1. Seabed Surveillance and Intervention 
 

A nation’s ability to conduct surveillance, protect, control and respond to events 

in its maritime regions is a reflection of its ability to maintain national sovereignty. The 

ability to conduct undersea operations is part of the sovereignty protection task that was 

assigned to the Canadian Navy in the 1994 Defense White Paper [Canada, 1994] and has 

been further amplified through the Defense Planning Guidance [Canada, 2001] and 

Maritime Commanders Planning Guidance documents. 

  
Figure 2-1 Deep Sea Intervention System (DSIS) ROV deployable to depths of 1400m DND Photo. 

 Seabed intervention involves the ability to work below the water surface to 

accomplish assigned tasks and to collect information on the marine environment and 

resources. It includes the means to search, detect, inspect and recover items of interest 

which are located on the seabed or anywhere within the sea’s water column. The 

associated tasks include scientific research, geological survey, fisheries research, aircraft 

crash investigation and submarine rescue [Reddy, 2002]. These Surveillance and 

Intervention tasks encompass and translate to war fighting capabilities in Anti Submarine 

Warfare (ASW) and Mine Counter Measures (MCM) operations.  
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The primary systems currently employed in support of surveillance and 

intervention operations include a suite of single beam and multi-beam side scan sonar 

systems for reconnaissance and localization together with Remotely Operated Vehicles 

(ROV) (Figures 2-1 and 2-2), and divers (Figure 2-3) for target classification, 

identification and/or intervention. 

  

 

Figure 2-2  Phantom ROV is a light weight system fitted with sector scanning sonar, video camera 
and manipulator arm. 

These systems have proven to be an effective combination in a range of 

operations including counter narcotic missions, aircraft crash search and recovery 

operations, Port Security activities and MCM Route Survey Operations. The navy 

currently has two ROVs and one Fleet Diving Unit on each of the East and West Coasts. 
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Figure 2-3  Diver suited up in CUMA2 Equipment, a mixed gas re-breather system for MCM 
Operations to a depth of ~80 metres. DND Photo. 

The effectiveness of these systems is limited when the operation is in a high target 

clutter environment. Sonars are most effective in low contrast environments where the 

targets are observed in sharp contrast to the surrounding region, e.g. a mine on a sand 

bottom (Figure 2-4). In highly cluttered environments a sonar’s ability to discriminate 

targets is severely degraded (Figure 2-5) [Klein, 1985]. Inspection and intervention 

operations are resource-intensive activities requiring the dedication of not only the diver 

or ROV Team but also their support infrastructure. This places a limit on the efficiency 

with which targets can be investigated. The navy has a vast underwater region to monitor, 

a growing security requirement to sustain, yet few diving and ROV assets to employ. A 

more efficient means to either reduce the number of targets to be inspected or to more 

quickly identify them is needed. 
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Figure 2-4 – High Resolution sonar image of mine shape on low contrast background (Sand Bottom). 

The shape is 80cm in diameter by 50cm high. DND Route Survey image 2002 

 

 The use of divers and camera-equipped ROVs permits the visual identification 

and examination of targets. The capability to direct ROV and diver assets onto targets is 

degraded in high clutter areas as the certainty of investigating the correct target is 

confused by the multiplicity of potential targets, inherent limitations in underwater 

navigation and the limited visual range. 

 
 

Table 2-1 Resolution of Generic Seafloor Mapping Systems 
System Horizontal 

Resolution
Range Qualitative 

Resolution Level
Multibeam 
Bathymetry 

1-5 m 10-3000m Meter 

Sidescan .1-.5 m 10-300m Decimeter 
Digital Video .005-.02m ~3m Centimeter 
Digital Still ~.001m ~3m Millimeter 
 

A suite of systems are used to investigate the seabed employing the acoustic and 

visual spectrums in a tradeoff between resolution and coverage range (Table 2-1). 

Multibeam bathymetry systems  are used to provide rapid coverage of relatively wide 

swaths with low resolution. Sidescan systems provide higher resolution coverage of 

generally narrower swaths at lower coverage rates (Figure 2-7). Digital video provides 
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superior resolution to sonar (Figure 2-6) while providing low resolution visual detail of 

very narrow swaths at very slow coverage rate. Finely detailed imagery is supplied 

through high quality digital still camera systems.  

 
Figure 2-5 - Sonar image of glacial erratic boulders on bedrock outcrop. High contrast background 
limits ability to resolve targets of interest and would be classified as an “un-huntable bottom” for 

acoustic Mine Hunting Systems. Image courtesy of Klein Sonar Associates. 

 
Rzhanov et al. [2000] suggest the ideal product from sea floor imaging efforts 

would be a complete 3D reconstruction of the scene with the resolution required to 

resolve essential details , and accurate geo-referencing such that subsequent maps could 

be compared. They go on to establish that the ideal is both difficult and costly to achieve 

and in many cases not necessary to meet objectives. This is in fact the case as it pertains 

to naval seabed intervention operations. Alignment of 2D sonar images of the 3D seafloor 

is routinely done through sidescan mosaics. Subsets of these mosaics are used as 

operational backdrops on electronic chart displays or produced in hard copy operational 

graphics for use in planning and pre-dive briefings (Figure 2-8). It is commonly assumed 

in the mosaic process  that the sea floor is flat. 
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Figure 2-6 Comparison of resolution levels between 25cm side scan sonar mosaic(top) and 2 cm 

resolution video mosaic(bottom). The sonar image at this scale is meaningless (dominated by speckle) 
while the video image displays rocks marine growth and shell hash. The video mosaic was generated 

by the author using the procedures outlined in this paper. 

Errors in a video mosaic due to terrain effects can be neglected as the areas 

mapped using optical imagery are relatively flat. The analysis errors incurred because of 

the flat bottom assumption are less than those related to navigational inaccuracies that 

must be considered if separate frames are used as opposed to a mosaic [Rzhanov et al., 

2000].  The use of consumer grade attitude sensors has been shown to effectively reduce 

the complexity of the transformation model of the images from projective to affine. By 

estimating tilt angles, with modest accuracy, frames can be corrected for projection 

distortion and the mosaic quality is greatly improved [Rzhanov et al., 2000]. 
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Figure 2-7 Sonar mosaics provide broad coverage (200m swath) useful in regional interpretation of 
seafloor characteristics. A 40m section of video mosaic is overlain for visual comparison of swath 

widths. The survey vessel track line is also shown. Sonar mosaic courtesy of DFO Canada. 

The minimum auxiliary data to support the process is a time series of camera roll 

and pitch that is synchronized with the video frames. The synchronization must be 

maintained at the frame level, even though successive frames in a video are virtually 

never employed in developing a mosaic. The accuracy of the roll/pitch information 

should be on the order of one degree or better. The ability to determine heading provides 

an azimuth relative to north which is used in creating north up mosaics [Rzhanov et al, 

2000]. 

Experience with sidescan mosaics has shown that data volumes and display of 

high resolution mosaics can be an issue. An uncompressed grayscale geotiff with 10cm 

resolution of a 1 sq km area represents a file size of 100mbytes. A 2cm resolution video 

geotiff in grayscale of the same coverage would be 2.5 gbytes. The mosaics are used as 

general back ground or reference images and indeed the raw data is kept near line for 
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recall when detailed analysis is required. A similar approach to the use and exploitation 

of video data would be appropriate. 

 

 

Figure 2-8 Example of sonar mosaic image of an aircraft crash site suitable for incorporation in to a 
planning graphic or use in a raster based electronic chart to support ROV or diver operations. DND 

Route Survey Image 2000. 

The processed sidescan mosaic images are stored along with a track file that 

provides sensor location, time and source data file. This allows for ready retrieval of raw 

imagery on demand. The same method could be employed for video data. It is further 

suggested that it would not be necessary to pre-mosaic the entire video footage. The 

mosaic of a 10m swath shown at 1:1000 is a 1cm thick line, hardly useful (figure 2-7). A 

recent survey of the Saint Lawrence River covered a navigation channel 200m wide and 

600km long. If this project was plotted out at a 1:1000 scale, the plot would be 20cm 

wide for 600m! It is proposed that the raw data be stored with pre-processed positioning 

and attitude data such that mosaic areas can be identified using the track file, and mosaics 

created dynamically for incorporation into operational graphics and GIS or for use in 

raster based electronic chart displays. 
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2.2 TOWCAM 
 

TOWCAM is an underwater towed camera system that includes a video camera 

and digital still camera for imaging the sea floor (Figure 6). It is towed at slow speeds and 

owing to limitations on underwater visibility, in close proximity to the bottom at heights 

of 2-3m. This system has been developed by fisheries scientists of DFO for use in habitat 

studies, benthic stock assessments and trawl impact studies. The system has been 

assembled through the use of “in-house” resources and commercial off the shelf (COTS) 

components [Gordon et al,1998]. 

 

 
Figure 2-9 – TOWCAM II Vehicle fitted with video camera and digital still camera. (DFO Photo) 

2.2.1 Towcam System Description 

The system is instrumented with a flux gate pitch and roll sensor, a pressure depth 

sensor, an echo sounder for use as an altimeter and a transponder for Ultra Short Base 
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Line (USBL)  acoustic positioning. Imagery is collected by a digital still camera with 

strobe flash and a digital video camera with Hydragyrum Medium arc Iodide (HMI) 

lights for illumination. The system is towed at speeds of about 2-3 knots at an operator- 

defined altitude above the bottom. This altitude is maintained by a feedback mechanism 

which controls the shipboard winch paying out and reeling in cable as necessary. 

Designed as a tool to inspect general features on the seafloor, it has on occasion been 

used to search for discrete items. TOWCAM has several limitations on it’s effectiveness 

in this role, but it has demonstrated that with some sensor enhancements it could be a 

very useful tool for target search and identification.  

2.2.2 TOWCAM In A Search Role 

In 1996, during a NATO exercise, 36 exercise mines (Figure 7) were laid by US 

B52 bombers near Halifax for re-location by NATO Mine Hunting Forces. The mined 

area turned out to be on a bottom type that is classified as “un-huntable” by acoustic 

systems and the mines were never located by the mine hunting systems deployed during 

the exercise.  
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Figure 2-10  US Mk82 Bombs being loaded onto a B52 Bomber, a conversion of the nose arming 

mechanism changes this free fall bomb into the MK36 Destructor Sea Mine. (USAF Photo) 

In the spring of 2001, TOWCAM was undergoing engineering trials in advance of 

its survey season. In order to challenge the control system, a bottom with rough terrain 

was sought for a part of the test. Discussion between the DFO Engineer and DND Route 

Survey identified the area of the lost mines as a suitable location to test the TOWCAM 

system while simultaneously testing it’s utility as a search platform. Provided with a best 

estimate location of the position of two of the mines (estimated at +/- 200m) TOWCAM 

deployed to the location and in a period of just 4 hours located both of the mines in 45 

metres of water (Figure 2-11).  
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Figure 2-11  TOWCAM video screen capture of an airdropped 227kg  Mark 36 “Destructor” Mine 
shape 1.67m long by 0.27m diameter on cobble bottom. The mine shape was undistinguishable from 
the background using sonar but is immediately apparent by video. DND Route Survey Image taken 

May 2001. The Video image was taken from an altitude of ~2m. With an assumed camera pitch angle 
of 0º the image plane is calculated to measure 3.34m wide by 2.03m high. 

Ambient visibility was 3-4m and the bottom was composed of cobbles and 

boulders. There are limitations to TOWCAM in a search and identification role. The 

vehicle must be towed at very low speeds which seriously degrades a vessel’s ability to 

follow or maintain a search track. Underwater visibility limits the altitude at which the 

bottom can be imaged and thereby limits the swath width which can be searched in this 

case to about 3m. The USBL positioning system in use provides a navigation accuracy on 

the order of 5m RMS thus (given the narrow swath) reducing the level of confidence of 

achieving complete area coverage in a search operation. Along track coverage poses no 
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problem as the video frame rate is ~30 frames per second which, conservatively assuming 

an along-track swath coverage of 1 metre, equates to a maximum tow speed of 30 metres 

per second (~60 Knots).  

2.3. Laser Underwater Camera Image Enhancer (LUCIE 2) 
 

The limited range of visibility underwater is due to a combination of attenuation 

in the medium and scattering from particulate matter. This limited visibility impairs the 

utility of video cameras on ROVs and, in the case of mine clearance operations, narrows 

the margins of safe operations for equipment and divers. Reducing this limitation has 

been the subject of research undertaken at the Defense Research and Development Center 

(DRDC) in Valcartier. A video camera system has been developed which limits the effect 

of volume scattering on an image, resulting in a marked increase in visual range 

underwater. 

2.3.1 LUCIE Described  

LUCIE combines a short laser pulse of  several nanoseconds with a time-gated 

image intensifier in order to enhance the range of visibility underwater. A laser pulse is 

transmitted and after a suitable delay the camera gate is opened for several nanoseconds 

and an image is recorded (Figure 2-12). This means that the intense backscatter from the 

water column lying between the target of interest and the camera can be prevented from 

occluding the desired image. The LUCIE 2 system extends the range by a factor of 3 to 5 

over conventional cameras when there is no natural illumination [Wiedemann et al, 2002].  
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Figure 2-12 LUCIE Principle of Operation, after [Canada, 2000]. 

2.3.2 LUCIE As A Mapping Tool 

This system has been under development for several years by DRDC at Valcartier 

for use in diver and ROV operations. Its deployment in a towed configuration as a 

mapping and inspection tool is an area of recent interest. Electro-Optical (E/O) systems 

such as LUCIE perform their best over bottoms with high contrast such as rocky or 

cobbled bottoms where there is little sand or sediment to mask targets. This is the 

environment where acoustic systems are greatly disadvantaged.  Conversely, low contrast 

muddy bottoms are a problem for E/O systems owing to sediment coverage. This 

suggests a complementary role for these systems. LUCIE 2 employs a laser for 

illumination. The laser has a wavelength of 532nm with a repetition rate of 21Khz and a 

pulse length of 5ns. The illumination system is controlled by a holographic beam shaper 

that produces a flat illumination field with a 4/3 aspect ratio. Target ranges can be 

determined by use of high frequency sonar (Figure 2-14). The aspect ratio matches the 
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field of view (FOV) of a standard video camera. The intensity of the illumination varies 

by less than 5% over 90% of the FOV [Fournier, 2003].  

 

 
Figure 2-13  LUCIE 2 camera system 25cm in diameter and  70cm long, neutrally buoyant in water, 

after Weideman et al [2002]. 

2.3.2.1 LUCIE Optical and Video Specifications 

The lens system is 10cm in diameter with a zoom range of 16mm to 160mm at an 

f=1.8. The lens has an auto-iris control and a fully motorized focus and zoom. Both the 

camera and the illuminator can be zoomed from 80 to 800 mr in water. The laser 

divergence and lens system can be slaved together to ensure maximum uniform 

illumination over the entire range of fields of view. The lens (top) and laser port bottom 

can be seen in Figure 2-13. The intensifier gate delay can be varied from 0 to 500ns and 

the gate width can be increased from 3 ns to 500 ns. The video output is digitized at full 

resolution 640 by 480 pixels at 30 frames per second. Given a 21KHz pulse repetition 

rate each camera frame is thus the average of 700 pulses. This technique has two notable 

advantages, the first is the elimination of laser speckle on the images and the second is a 

large reduction in eye safe range down to one meter from the aperture, thereby 

significantly reducing the risk of personnel injury [Fournier, 2003]. 
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Figure 2-14  The high frequency sonar on LUCIE can be employed to provide initial target ranging 

to allow setting of laser pulse and camera gate parameters, after Canada [2000]. 

 
2.3.3.  LUCIE in a Towed Configuration 

The enhanced range achieved with the LUCIE system would allow for a wider 

swath of coverage in a towed configuration as the vehicle can be operated at greater 

altitude off the bottom. This also has the benefit of reducing interaction with the bottom 

which causes reduced visibility from disturbed sediments and reduces risk of impact 

damage or damage due to tangling with bottom obstructions. The wider swath also 

increases the reliability of achieving complete bottom coverage as the footprint can 

encompass the navigational error budget. The LUCIE 2 camera, as described, mounted in 
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a tow body would have a maximum 40º swath width. At a height of 10 meters, this 

corresponds to a swath width of 8.4 meters. The current measured real minimum 

resolution of the high-gain gated-intensified camera is 240 line pairs across. This gives a 

resolution on the order of 1.75cm on the bottom. As there are 640 pixels across the screen, 

the pixel size is 1.15cm [Fournier, 2003]. 

 

 
Figure 2-15  . Comparison of visible range results in 2m visibility water from tests conducted by 

DRDC Valcartier employing a standard video camera with quartz halogen illumination, a low-light 
Silicon Intensifier Target (SIT) Camera and the LUCIE system after Canada [2000]. The “Y” axis is 

visibility in metres. 

 
Port approaches and harbours tend to have poor visibility conditions due to 

estuarine oceanographic and anthropogenic contributions to the water column. 

Furthermore, ROV and diver operations are severely hampered by the silt that gets stirred 

into the water column from their own activities. Two to three meters visibility is typical 

for harbour conditions.  Figure 2-15 depicts the range advantage achieved by LUCIE. It 

should be noted that although the physical enhancement is by a factor of from 3 to 5 

times, the operational enhancement due to reduced interaction with the seafloor 

sediments is a factor of ten [Fournier, 2003]. The navy is actively investigating the 

adaptation of LUCIE for use in a towed system for inspection and mapping operations. 

22 



2.4 Video Mapping as a Surveillance Tool 

 The demand for meso-scale imagery to better resolve seafloor targets has 

significant support. The use of rudimentary systems fitted with inexpensive attitude 

sensors such as found in the TOWCAM vehicle provides a cost efficient method of 

achieving this end. The ongoing developments in underwater electro-optics as 

demonstrated by the LUCIE System provides for enhanced coverage rates and vastly 

improved confidence in the thoroughness of coverage achieved. 
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Chapter 3 – Video Mosaicing Considerations 

3.1 General 

 Video is an important tool for underwater operations. It is commonly employed to 

enhance diving and ROV operations, providing a continuous record of the experience as 

well as enabling the control and monitoring of the under-water activity. The technology is 

widely used, with off-the-shelf systems readily available. The system setup and 

operational costs are lower than many other sampling techniques and it provides data in 

small study areas invaluable for analysis. The application of video in larger study areas 

has been more limited [Williams and Leach, 2000]. The use of  video mosaics created 

from transect coverage can provide a meso-scale view of larger study areas and is thus 

highly desirable as an aid to tie between small study areas. 

3.2 Mosaicing Techniques 

 Video mosaicing is a routine activity. Whether from highly specialized unmanned 

airborne vehicles (UAVs)  for intelligence and targeting systems, such as the USAF’s  

Global Hawk (figure 3-1), or more modest underwater towed video systems, the demand 

for a coherent geo-registered composite image exists. 

 

Figure 3-1 Global Hawk surveillance UAV is fitted with a range of electro-optical systems and can 
generate geo-spatially registered video mosaics in near real time. USAF Photo. 
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Early mosaicing methods were manual in nature, consisting of the joining together of 

hard-copy prints by laying them together and taping them to form a large sheet. Later 

image processing using computers has permitted stored images to be merged digitally 

[Marks et al., 1995]. Today, inexpensive consumer grade digital cameras are delivered 

with software to automatically generate panoramic mosaic scenes from a sequence of still 

photos figure 3-2. 

 

 

Figure 3-2  Panoramic image generated from a sequence of four digital still photos with ~20% 
overlap. The software provided with the camera system seams the photos together by matching 

features, there are no lens or geometric correction factors applied. This is emphasized by noting that 
the wooden border to the garden is, in fact, a straight wall. 

3.2.1 Underwater Mosaicking 

 The underwater environment introduces a variety of complications to the 

generation of geo-registered mosaics. Limited underwater visual range requires camera 

systems to be operated in close proximity to the bottom, and thus limits the width of 

coverage. The camera must be operated from a remote vehicle, either towed or 

autonomous, which complicates the positioning and attitude solution by introducing 

additional degrees of freedom to the solution, thus leading to greater positional 

uncertainty. The traditional approach is to point the camera as nearly vertical to the 

seafloor as possible in order to limit perspective distortion. This is often not feasible, as 

one of the main purposes for the video camera is to look ahead for potential obstructions.  
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3.2.1.1 Sensor-Only Mosaic 

Haywood [1986] proposes taking images at precisely known coordinates with 

high precision, permitting image merging by computing frame-to frame motion 

parameters directly from the camera positions. Marks et al., [1995] describe a four 

parameter semi-rigid motion model for creation of near real-time ocean floor mosaics that 

Gracias and Santos-Victor [1998] say restricts the scope of applications to images whose 

retinal plane is closely parallel to the ocean floor. 

3.2.1.2 Estimated Motion and Image Matching 

It is common to use the pinhole camera model in computer vision applications to 

linearly map from the 3D projective space to a 2D projective plane. The 2D projective 

transformations can be used to model image motion. Creation of video mosaics is 

accomplished by registration of the image where image motion is estimated, the 

individual frames are fitted to a global model of the video sequence, and the mosaic is 

then rendered by applying a temporal operator over the registered and aligned images 

[Gracias and Santos-Victor, 1998]. 

3.2.1.2.1 Optical Flow 

Optical Flow is a technique to compute frame transformation parameters needed 

to perform the affine transformation  to align sequential video frames. Obodez and 

Bouthemy [1995] describe a robust method for the estimation of parametric motion 

models and have developed a software library called Motion2D which is an 

implementation of the robust, multi-resolution and incremental estimation method. The 

motion analysis is performed by identifying the 2D parametric models of the optical flow 

field using the polynomial models of the point coordinates in the image plane. Those 
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models include constant flow (translation), affine flow (first order polynomials in x and y) 

and quadratic flow. This method is effective on static scenes. 

3.2.1.2.2 MPEG Motion Vectors 

 Jones et al. [1999] describe the use of the motion vectors encoded by the MPEG 

video compression scheme to estimate camera motion and thereby create video mosaics. 

The MPEG vectors determine the camera’s pan, tilt and zoom factor which is then 

utilized to align the video frames. This method is faster at creating mosaics than those 

that rely on other image processing techniques to estimate camera motion. This method is 

liable to produce erroneous results when there is significant object motion within the 

video. 

 

 

Figure 3-3 Mosaic of underwater pipeline, after Garcia and Santos-Victor (1998). 
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3.2.1.3 Oblique Video and Image Registration 

Kumar et al.,  [1999] describe the near real-time registration of highly oblique 

aerial video collected by UAVs. Relying on the redundancy provided by significant 

frame-to-frame overlap in the video, they use key frames to compute the frame-to-frame 

motion which along with frame-to-frame alignment parameters permits the generation of 

a single extended view mosaic. They go on to achieve fine geo-registration by refining 

the estimate using the relative information between frames to constrain the general 

solution. The transformation is modeled in two parts by an external coordinate 

transformation that specifies the 3D alignment parameters between the reference and 

camera coordinate systems and an internal camera coordinate system to image 

transformation involving an affine transformation and non-linear lens distortion 

parameters. This transformation model is combined with Digital Elevation Model (DEM) 

data to completely specify the mapping between the video pixels and the reference 

imagery. High quality attitude and optical sensors coupled with precision positioning 

through GPS readily available to an airborne sensor serve to strengthen the solution.  

3.3 Lens Distortion 

Pers and Kovacic, [2002] state that, 

 “Radial lens distortion prohibits use of simple pinhole camera models in computer vision 
applications, especially when using wide-angle lenses, which result in barrel type 
distortion. The usual approach to radial distortion is by the means of polynomial 
approximation. Lens distortions are long-known phenomena that prohibit use of simple 
pinhole camera models in most of the computer vision applications. Being the most 
stubborn type of  lens aberrations, they do not influence quality of the image, but have 
significant impact on image geometry [Slama, 1980]. Several types of lens distortions 
exist, however, radial distortion is usually the most severe part of the total lens distortion, 
especially when inexpensive wide-angle lenses are used.”  
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Inexpensive off-the shelf cameras are commonly employed in underwater applications, 

thus radial lens distortion must be accounted for.  

3.3.1 Radial Lens Distortion 

 According to Derenyi [1996], radial distortion displaces the image points in a 

radial direction away from the principal point. Outward displacement is considered 

positive and is commonly described as barrel distortion. The determination of lens 

distortion is an integral part of camera calibration. The three methods to specify  

distortion are graphically, in tabular form or by a mathematical model.  The mathematical 

model is more commonly employed in the case of non-metric camera systems such as 

consumer grade digital cameras. Karras and Mavrommati [2001] state that, 

 “radial symmetric lens distortion ∆r can be determined in a common solution with the 
other interior orientation parameters (through test-field calibration or bundle adjustment) 
but may also be estimated separately. Such independent knowledge of the radial 
distortion of a lens is useful in a variety of cases, for instance: 

a. correction of image coordinates in rectification ; 
b. correction of image coordinates in cases where “nominal” interior 

orientation values are used; 
c. correction of image coordinates for test-field calibration or self-calibration 

algorithms which cannot recover ∆r; and 
d. for resampling digital images (rectified or otherwise) to free them from the 

distortion effect.” 
 

Radial symmetric lens distortion is expressed through the coefficients of a polynomial 

referring to the radial image distance r 

∆r = k0r +  k1r3 + k2r5      (1) 

and is split into its x and y components as 

∆x =  ∆r x/r = x (k0 +  k1r2 + k2r4 )  ∆y =  ∆r y/r = y (k0 +  k1r2 + k2r4 )          (2) 

Karris and Mavrommati [2001] identify a variety of techniques to estimate distortion 

parameters including: 
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 a. from the curvature of straight lines; 

 b. with the rectification of regular grids; 

 c. from the rectification residuals; and 

 d. from the residuals of partial rectification. 

More rigorous calibration may be achieved through the use of planar test fields and 

processing through a self-calibration package as envisioned by Zhang [1998] or through 

Finite Element Modeling and bundle adjustments as described by Li [1999]. 

3.4 Lighting Correction 

Borgetto et al, [2003] describe underwater lighting as being non-uniformly 

distributed. Solving this problem during a pre-processing step improves both image 

quality and mosaic creation. Radiometric correction and homomorphic filtering are 

suggested as two avenues to resolve this problem. 

3.4.1 CCD Camera Radiometric Correction  

Model-based CCD camera radiometric correction is commonly used in remote 

sensing and astronomical imaging [Gonzalez, 1992]. The model subtracts a dark 

reference image (DR) from the acquired image and then divides the result by a 

uniformly- lit reference image (ULR) to obtain a corrected image. Implementation of this 

model requires an estimation of the DR and ULR images.  

3.4.1.1 Dark Noise Image 

CCDs emit a small signal even though no radiation is being detected. This is 

known as Dark Current and is  the residual electronic noise in the system at any 

temperature above absolute zero. Each detector will have a slightly different response at 
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any given temperature and/or pressure resulting in an image of dark noise superimposed 

onto the collected image [Richards, 1999]. A DR image may be acquired by closing the 

camera objective in the desired ambient conditions and recording the image [Borgetto et 

al, 2003]. 

3.4.1.2 Uniformly Lit Reference Image 

 Borgetto et al, [2003] describe three techniques for obtaining a ULR image. The 

first is by convolving a sequence of images with a Gaussian filter to yield a smoothed 

image. The second is to acquire the image from a uniform bottom, in uniform lighting 

while diving. The third is by modeling the lighting conditions, which is possible in 

situations where no natural light is available. 

3.4.1.3 Homomorphic Filtering 

Homomorphic filtering is a generalized technique for image enhancement and/or 

correction. It simultaneously normalizes the brightness across an image and increases 

contrast [Gonzalez and Woods, 1992].  Borgetto et al, [2003] calculated the filter 

parameters qualitatively as they had no means to work out the parameters automatically, 

and reported good results but noted that operator intervention was necessary to set the 

parameters. 

3.5 Mosaicing Scheme for TOWCAM Video 

TOWCAM was built as a tool to study seafloor habitat rather than as a mapping 

system. It does include positioning capability and is fitted with engineering sensors to 

support its operation and system control. These sensors may be adequate to permit the 

creation of coherent, spatially-registered mosaics for support of habitat studies. Mosaics 

will be created from up to 25 second segments of video. This length is selected as it 
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allows an averaged position solution to be used while providing a mosaic of reasonable 

length (~30m). Frame-to-frame image correlation techniques will not be used in this 

implementation as the intent of this report is to focus on the use of available sensor data.  

3.5.1 Camera Model  

The approach will be to use a pinhole camera model, supported by the available 

sensor data, to project the image frames to an assumed flat earth creating a two-

dimensional mosaic from the available video. TOWCAM is towed at very slow speeds 

and significant frame-to-frame overlap occurs (~98%) see figure 3-4.  

Nominal Tow Speed (ν ) in m/s

ν 1.5

Central Pixel Resolution (p_res) in m for frame at 2m altitude and 30 degree pitch

p_res 0.005

Video Frame Rate (f_rate) in frames/sec Pixel Rows per frame (n_rows) 

f_rate 30 n_rows 480

Number pixel rows required (rows_req) for 100% coverage

rows_req
ν

p_res f_rate.( )

rows_req =

Percent Overlap = n_rows rows_req( ) 100.

n_rows
=

 
Figure 3-4  Computation of TOWCAM nominal frame overlap 

 

3.5.1.1 Image Correction 

The least-distorted rows from each frame will be used to limit the effects of un-

modeled distortions and misalignments. This approach permits a more rudimentary 

calibration of the camera lens to be performed to correct for radial distortion as 
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distortions in the upper and lower reaches of the image are no longer a factor. The 

application of a radiometric correction is also simplified by this approach as the 

correction needs only apply to the central few image rows which have a lesser variation 

in range from the lens between pixels. The mosaic will be produced in grayscale. 

Williams and Leach [2000] state that, 

 “The video contains red, green and blue color channels which combine to form 
the color video image. Water absorbs red light wavelengths more readily than green or 
blue. Even with natural illumination, the red spectral information is removed when 
imaging from a distance greater than approximately 2m, with green light next to be 
absorbed at around 10 metres. This absorption produces imagery with a distinct blue-
green coloration, with the reduced spectral range resulting in less apparent detail.” 

 
 Generating the mosaic in grayscale will thus provide an image less sensitive to 

wavelength absorption with negligible loss of detail (see figure 3-5). The reduction from 

a 24 bit (color) to an 8 bit (grey) image reduces file sizes and processing effort by a factor 

of three. 

 

 

Figure 3-5  Comparison of color versus grayscale. The left hand image is an RGB color mosaic, while 
the image on the right is the grey value conversion of the same image. There is negligible loss of detail 

between the two images while the grey provides a more consistent overall picture. The images are 
after Williams and Leach [2000]. 

3.5.2 Export Mosaic to GIS 

 The geo-registered mosaics will be exported in  JPEG format which can be read 

by common GIS systems. These mosaics may be combined within the GIS to generate 
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broad area coverage maps. The GIS selected for this paper is ARCGIS 8.1 from ESRI 

Corporation. 

3.5.3  Conclusion 

 TOWCAM is a system designed to provide data for use by biologists and 

geologists. In the next chapter, a system to generate mosaics from the video, requiring 

limited operator input, will be described. These mosaics could prove useful in naval 

seabed surveillance pursuits. 
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Chapter 4 – Creating Video Mosaics From TOWCAM 
 
4.1 Introduction 

This chapter describes, in detail, the generation of a video mosaic from 

TOWCAM data collected aboard CCGS HUDSON on Sable Island Bank in October 

2003. TOWCAM was not designed as a video mapping platform and so must not be 

expected to provide precision, geographically registered mosaics. The mosaic image is 

assembled using data from the sensors as fitted. The mosaic is projected to a flat earth 

plane with an approximate geographic position. In this chapter: 

a.  the sensor data logging system is discussed, 

b.  the camera calibration procedures is described; and 

c.  a detailed description is made of the data processing flow and software 

developed to generate a mosaic; and 

The chapter concludes with a demonstration of an example mosaic generated using the 

procedures described. 

 
4.2 Positioning and Attitude Sensing 
 

The location and orientation of the camera is fundamental to the process. Serial 

navigation and attitude data strings from the GPS receiver, the ORE Trackpoint, and the 

ship’s gyro compass are multiplexed into a common file on a first-in first-out (FIFO) 

basis. All navigation and telemetry data from the TOWCAM are recorded to the audio 

channel of the video file using a one-of-a kind modulator home built at the Bedford 

Institute of Oceanography (BIO) and  are tagged with the GPS time to allow correlation 

of the data. TOWCAM is fitted with a flux-gate magnetic pitch and roll sensor but lacks a 
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heading sensor. The lack of camera heading data is problematic for geo-registration of the 

video frames. TOWCAM is also fitted with a pressure depth sensor, an altimeter, and an 

acoustic positioning beacon. The applicable offset and alignment information is 

contained in Appendix 1. 

   
4.3 Camera Calibration 
 

It is important to have an understanding of the image distortion inherent to the 

camera. The video camera in use lacked any technical documentation with respect to the 

CCD array size and the lens focal length. The video frames are assembled from the image 

projected onto the CCD array. Thus, the CCD array dimension was assumed to 

correspond to the output video frame pixel dimension (in this case 480 rows by 720 cols). 

In order to determine some usable lens characteristics, a simple pinhole camera model 

was assumed. An angular Field of View (FOV) was determined by imaging an object of 

known dimension from a known distance and radial distortion correction parameters 

could be established. 

4.3.1 Calibration Procedure 

A series of reference frames were collected by mounting the camera at a 

measured orientation and distance from a reference. The video camera from TOWCAM 

was made available to the author for a short period of time. A laminated paper grid with 

lines at 5cm interval and tick marks at one cm interval was generated to act as a 

calibrated reference plane. In retrospect, the lamination was to prevent or reduce 

humidity-induced distortion, however this created significant glare in the video (Figure 4-

2). The DV Camera was mounted on a construction-grade self-leveling laser line level 

(Figure 4-1). All alignments and measurements were performed using construction grade 
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instruments (ie rafter square, bubble level and measuring tape). The DV Camera was 

inside an underwater housing and was not removed for the calibration. The collars on the 

underwater housing were of different diameters, a wooden shim was placed between the 

camera tube and level to keep the camera in  parallel. The altitude measurements were 

made to the back edge of the lens window collar on the housing.  

 
 

 
Figure 4-1 – Basic setup used for quick video camera calibration 

A series of short video clips were recorded orthogonal to the x-axis of the grid at various 

angles of  pitch along the y-axis. Owing to the wide-angle view of the lens, these shots 

were made at 20cm from the grid plane.  
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Figure 4-2- Video Frame of planar grid taken from 20cm height at 26.6 degrees pitch. The camera 

has been rotated 90º from vertical and the laser dot is 6.8cm to the left of bore site. 

 

4.3.2 Calibration Results 

The video was recorded to a DV mini Cassette Deck and subsequently transcribed 

to DVD format. Video frames were exported from the DVD using a software package 

called TRANSCODE version 0.67 [Bitterberg, 2003] running under LINUX Operating 

System [Mandrake, 2004]. The frames were exported in “ppm” format at 720 by 480 

pixels with no data being recorded in the right margin of the video from pixel 710 to 720. 

Calculating two times the arctan of the observed grid value in the orthogonal image 

divided by the measured altitude of the camera, the diagonal field of view in air was 

determined to be 128º. Applying a refraction index for water of 1.33, the refracted 

diagonal FOV for the camera in water was estimated as 96º. The refracted FOV values 

seemed justified by comparison to the 1.67m x .27m mine in the underwater video frame 

shown in Figure 2-8. 

4.3.2.1 Radial Distortion 
 

The wide-angle view of the camera leads to radial distortion in the outer areas of 

the image. This distortion is greatly exaggerated by the oblique view of the video system 
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and so must be compensated for. Figure 4-3 exhibits the effect of barrel distortion from 

an orthogonal view while Figure 4-4 shows the exaggeration induced by an oblique view. 

 

 
Figure 4-3 Preliminary calibration image of laminated paper grid taken orthogonal to vertical and 
horizontal axis at 20 cm above grid plane. The grid ticks are at 1cm interval and lines are at 5cm 

intervals. Note the characteristic barrel radial distortion. 

 
The original image taken orthogonal to frame center from a height of 20 cm measures 

480 pixel rows by 720 pixel columns. The vertical dimension imaged is 29.2.cm, while 

the horizontal dimension imaged is 49cm. The average vertical pixel angle is equal to 

arctan (14.6/20) divided by 240 = 36.129/240= 0.15º. 

The average horizontal pixel value is equal to arctan (24.5/20) divided by 360 = 

50.774/360= 0.14º. The scaling factor from horizontal to vertical is 15/14=1.07. 
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Figure 4-4 - Laminated paper grid imaged obliquely from an altitude of 21cm above grid plane at a 

pitch angle of 35 degrees. Note the presence of some dimpling in the grid due to its not being 
perfectly flat. 

The polynomial radial distortion correction function as described in 4.5.4.1 was applied 

on a trial and error basis to determine reasonable values for the k1 and k2 parameters. The 

initial tests were applied to the orthogonal view at Figure 4-3 focusing on achieving 

satisfactory values for the central 100 rows of data. These results were then applied to the 

oblique view at Figure 4-4 which more closely represents the perspective to be 

experienced in TOWCAM operations. Figure 4-5 is the resultant image of Figure 4-4 re-

projected to a plane using the polynomial radial distortion correction function described 

in equations (1) and (2) of paragraph 3.3.1. 
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Figure 4-5 –  Image from Figure 4-4 projected to a flat plane with radial distortion correction applied. 
The results are particularly good for the central rows where the grid lines are once more parallel and 

the grid spacing has become uniform. Note that the dimpling visible in the grid is accentuated. 

4.3.2.2 Radiometric Correction 

A Dark Reference image was not available and thus the DR image correction 

described at 3.4.1.1 was not applied. 

The quality of the final mosaic image was enhanced by balancing the level of 

illumination across the video frames. Underwater lighting is provided by artificial 

illumination of HMI lights to augment ambient light. The sample image frame in Figure 

4-6 displays a roughly circular radiance pattern. The final mosaic will contain only a few 

scan lines from the center of the image frames and thus a simple radial correction 

algorithm generating a corrected Digital Number (DN) value based on range from image 

center was chosen. 
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Figure 4-6 Video frame showing roughly circular (elliptical) radiance pattern from HMI illumination. 

 
4.4 TOWCAM Data Description 

 The positioning and attitude data relevant to the system must be extracted and 

cleaned and then correlated with the applicable video frame. 

4.4.1 Navigation and Telemetry Logging 
 

All shipboard sensor serial data is multiplexed on a first-in first-out basis (FIFO) 

and logged  to a file with an extension “.03e”. The predominant serial format in this file 

is of the NMEA 0183 comma-delimited variety and is recorded at various rates as output 

by the particular sensor.  The logging package employed is Regulus Survey© which is 

also employed by the ship as an electronic chart and navigation package. In addition it 

may be employed by other simultaneous activities and thus there are normally many 

other serial streams multiplexed that are irrelevant to the TOWCAM operation which 

must be filtered out.  
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$GPVTG,298,T,319,M,03.5,N,06.4,K*42 
$HEHDT,287.4,T*26 
$GPGLL,4404.41,N,06054.89,W,145311,A*3C 
$GPZDA,145313,08,10,2003,03,00*42 
$HEROT,-000.7,A*01 
$GPRMB,,,,,,,,,,,,,*66 
$HCHDT,,T*07 
$PASVW,03.5,A*1A 
$GPGGA,145311,4404.4128,N,06054.8922,W,2,05,02.3,14.0,M,-21.3,M,03.5,0335*6C 
$GPRMC,145311,A,4404.41,N,06054.89,W,03.5,298,081003,020.8,W*59 
$IIVHW,287.6,T,,M,,N,,K*70 
$VWVHW,,T,,M,2.8,N,5.2,K*59 
$WIMWV,332,R,031,N,A*23 
2 14:53:25 358 175.9    53.2      3.2    -45.2    28.0    654.1      0.4  -0.5 
$POREB,2,145325,0,175.9,53.2,3.2,-45.2,28.0,0,0,0.4,-0.5*00 

 
Figure 4-7 - Example lines of serial data found in a “.03e” file. The second last line is in the ORE 
native format, the last line shown has been re-written by the logging software as an NMEA 0183 

record with the “POREB” identifier string. 
 
4.4.1.1  Shipboard Navigation Data 

The NMEA 0183 record IDs that are of interest include: 

a. GPZDA for year, month and day; 

b. GPGGA for time and position; 

c. GPVTG for speed and course made good;  

d. HEHDT or AGHDT for ship gyro heading; and 

e. POREB for acoustic positioning of the TOWCAM vehicle. 

It is of note that the ORE Trackpoint data is received and written in an ORE 

space-delimited format but is also re-written by the logging package with a user-specified 

NMEA 0183 talker and record identification of  “POREB”. The time written in this string 

is ORE System time which does not necessarily equate to GPS Time. 

4.4.1.2  TOWCAM Telemetry Data 

The sensor data from the TOWCAM vehicle and control system is recorded along 

with the most recent GPS Time. Fields of particular interest include pitch, roll, altitude 
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and depth. Unfortunately the vehicle does not have a heading sensor. The data is 

modulated and recorded to the audio channel of the Digital Video recording.  The data is 

logged at a rate of one Hertz. Once the data is demodulated and exported to a disk file for 

processing, the file is given the extension “.03T”. It commences with two lines of header 

data followed by sensor data in a comma-delimited text format (Figure 4-8). 

 
Figure 4-8 First five lines from a “.03T” TOWCAM data file showing the two header lines followed 
by comma-delimited sensor records. The time in the first field is TOWCAM system time, GPS Time 

is found in the seventh field. 

Hudson Cruise: HUD2003059 Station: Sable Hot Hot 
Recording session started on 08-Oct-2003 
14:38:10, 10.48, 6.17, -14.17, 2.16, 43.07, 143759, 2.90, 2.50, 0.00, 60.90, 28.00, A, 1.90, 2.83, 0.00 
14:38:11, 10.45, 11.33, -13.25, 2.05, 43.18, 143800, 2.90, 2.50, 0.00, 61.30, 28.00, A, 1.90, 2.78, 0.00 
14:38:12, 10.45, 17.17, -14.17, 1.99, 43.29, 143801, 2.90, 2.50, 0.00, 61.30, 28.00, A, 1.90, 0.00, 0.00 

 
4.4.2 Video Data Recording 

The TOWCAM Video is recorded to Digital Video (DV) Tape. The Video frames 

are superimposed with GPS time and ships position from the NMEA GGA string output 

from the GPS Receiver (Figure 4-9). The GGA string updates at 1 Hz; given a frame rate 

of 29.97Hz, 30 consecutive frames are tagged with the same position and time. The 

time/position string is written over the frame in rows 50 through 70. The string image 

commences with the six digit time in an HHMMSS format from column 50 through 

column 140. This video tagging provides the only point of reference for correlation of the 

telemetry and navigation data with the video frames. 
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Figure 4-9   Video frame showing time and position stamp. The position given is at the GPS Antenna, 

the time provides a tag to the navigation and telemetry data. 

To permit video processing the NTSC Colour Video is exported from the DV 

Tape to DVD-R in MPEG2 format at 29.97 frames per second using a Pioneer DVD 

Recorder. The files are written with a “.VOB” extension. 

4.5 TOWCAM Data Processing 

All processing was performed using a PC fitted with a Pentium III (1000) CPU, 

512mb RAM, DVD reader and 80GB disk drive. The LINUX Operating System was 

chosen owing to the broad range of readily-available, openly-accessible and flexible tools 

to manage and process these types of data. The open-source software packages employed 

included: 

a. the GNU implementation of Awk and C-Shell Scripting for re-formatting 

of ASCII Data Records,  

b. Transcode for video file access and frame export; and 

c. NETPBM Tools and ImageMagick for bit map display, conversion and 

manipulation.  

OMG Tools and additional programs were written in C to tie these tools together and re-

project video images into geo-registered mosaics. The regular format of the text-based 
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navigation and telemetry data files allows for the  use of shell scripting to extract 

pertinent data fields and re-combine them into coherent time-based records. The analog 

time stamp in the video data provides an avenue for the correlation of the text and video 

frames. The steps involved in generating a mosaic from a selectable time sequence are 

shown in Figure 4-10 and will be described in detail in subsequent sections. These steps 

were linked together and executed from the program called “mosProc.c” (see Appendix 2 

section A2.1). 

 

Data Preparation
(4.5.1)

Position and Orient 
Frames (4.5.3)

Re-project Frames
(4.5.4)

Patch Frames to 
Mosaic Area (4.5.5)

Export Video Frames
(4.5.2)

 
Figure 4-10 - Data Processing Sequence presented as five separate steps. The  associated section 

numbers in parentheses are provided for reference. 

 
4.5.1 Data Preparation 

The processing strategy followed was to pre-process the data by organizing data 

files into a common directory tree as shown in Figure 4-11,  and establishing time-based 

correlation of Video and ASCII data. Once the data was organized in this fashion, a series 

of custom-written scripts and programs were called from “mosProc.c” to execute the 

sequential steps. 
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Video Data
“.vob” Files

Transcode
Working

Mosaic
Working

Nav Data Line 3

Nav Data Line 2

Nav Data Line 1

Nav Data Line 4

Main Project
Direc tory

“.03e”, “.03T” and “.log” files

 
Figure 4-11 - Layout of project directory tree showing data and working sub-directories 

 
A project directory tree was created with individual subdirectories for each survey 

line’s navigation and telemetry data, one for the video files, and two “working” sub-

directories for the extraction, re-projection and mosaicing of the video frames. A comma-

delimited text file named “Vid_Info.txt” was created in the main project directory, giving 

file name, frame start time, stop times, sub-directory containing navigation and telemetry 

data, and the name of the video log file for use by the processing system to  correlate 

navigation and telemetry data with the individual frame. An example of this file can be 

found in Figure 4-12. 

 

VTS_01_1,125401.67,130459,CON238_Line_TC1A_to_B/,nav_seek_01_1, 
VTS_02_1,143728.5,145459,CON238_Line_TC6B_to_A/,nav_seek_02_1, 
VTS_05_1,023243.7,024359,CON269_Line_TC1B_to_A/,nav_seek_05_1, 
VTS_03_1,003653.7,004959,CON269_Line_TC6A_to_B/,nav_seek_03_1, 

Figure 4-12 Example of “Vid_Info.txt” file stored in the main project directory. 

4.5.1.1  Time Synchronisation 

The correlation of the video and ASCII data was done by the manual examination 

of a set of sequential frames for time rollover to establish a temporal benchmark. Once 
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identified, this point was used to calculate the video start time based upon the known 

frame number and the video frame rate. Because of inherent delays in the serial output of 

the NMEA sentences, this provided the most precise marker available.  

 

 
Figure 4-13 Cropped sections of two successive video frames showing time rollover artifact from 

004049 to 004050. 

 
  In order to determine the time of the first frame, Transcode was used to export the 

first forty frames of video. These frames were visually read using ImageMagick’s 

“display“ command to cycle through each frame until ime rollover was identified in a 

frame (see Figure 4-13). The start time was then linearly back-calculated based upon 

frame number, rollover time and frame rate.  

4.5.1.2 Random Access Video Frames 

A method to randomly access a specific location in the video file was required, as 

sequential access to a video file containing hundreds of thousands of individual frames is  

highly inefficient. Transcode has a function called “tcdemux” which can optionally 

generate an indexing file for randomly seeking frames using the “-nav_seek” switch in 

Transcode. This function was employed on each file to generate an indexing file for each 

video file with a file name that included the video file name and a “.log” extension. The 

“.log” files were stored in the subdirectory together with the applicable navigation and 

telemetry data files. 
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4.5.1.3 Reformat and Combine Data 

A shell script called Merge_Data (see Appendix 2 section A2.5 ) was written to 

strip and reformat pertinent navigation and telemetry data. The ASCII ship navigation 

“.03e” and TOWCAM telemetry “.03T” files for each survey line were prepared into two 

comma-delimited ASCII files. One file, named “mosTrack.txt”, merged the navigation 

and telemetry data records that were logged at one Hz. The second, “ORE_Data.flt” 

contained the ORE Trackpoint data which was logged at 0.5Hz.  

4.5.1.3.1 Extract Navigation Data 

The GNU implementation of the pattern matching language called “GAWK” was 

employed. The “.03e” file was scanned based on the desired record lines which were then 

stripped of appropriate fields, and written to  a file named “NMEA_Data.tmp” . An 

additional field for seconds since midnight was also created from the hours, minutes and 

seconds (HMS) time field. A separate file for the acoustic trackpoint data called 

“ORE_Data.tmp” was created using the “POREB” record along with the time field from 

the most recent “GPGGA” record. 

4.5.1.3.2 Merge Navigation and Telemetry Data 

The  “.03T” record was then similarly stripped of the desired fields and re-written 

to a file called “Towcam_Data.tmp”. The two “.tmp” files containing NMEA and 

Towcam data were merged based upon a common time field using the Linux “join” 

command and saved to “Merge_Data.tmp”. The Latitude and Longitude fields were 

converted to decimal degree format with a precision of ten decimal places and written 

along with the rest of the record to the file “mosTrack.txt”.  
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4.5.1.3.3 Median Filter APS Data 

The Ultra Short Baseline (USBL) ORE Trackpoint system on Hudson exhibits an 

excessively noisy azimuth computation as apparent from the graph in Figure 4-15. In 

order to reduce this noise, the file “ORE_Data.tmp” was passed though the program 

“filtnav.c” (see Appendix 2 section A2.2) to apply a five point median filter to the ORE 

Azimuth field and saved as “ORE_Data.flt”.  
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Figure 4-15 Graph compares a sample of five point median filtered ORE Azimuth data with raw 

logged data. The azimuth is relative to ship’s heading. The raw data exhibits excessive noise, the data 
points are logged at an interval of two seconds (0.5Hz). 

 
Figures 4-16 and 4-17 provide an example of, and details the record format used by the 

files “mosTrack.txt” and “ORE_Data.flt”. 
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Figure 4-16 Record format for combined 1 Hertz Navigation and telemetry data . The GPS Time is 

only output by the receiver in integer seconds. 

"mosTrack.txt" Record Format 
Comma delimited fields, CR/LF separated records. 
 
Sample Record: 
 
"125401,44.0668300000,-60.9095583333,4404.0098,06054.5735,099,05.7,106.6,2003,10,08,46441,6.00,-11.17,1.81,46.80" 
 
Field Name  Description  Example Value  Source Record 
 
GPS Time   HHMMSS  125401   GPGGA 
 
Latitude   DD.dddddddddd  44.0668300000  Calculated 

North +      from GPGGA 
South - 

 
Longitude   DD.dddddddddd  -60.9095583333  Calculated 

East +      from GPGGA 
West - 

 
North    DDMM.mmmm  4404.0098   GPGGA 
Latitude 
 
West   DDDMM.mmm  06054.5735  GPGGA 
Longitude 
 
GPS Course  DDD   099   GPVTG 
 
GPS Speed  Km/Hr   05.7   GPVTG 
 
Ship Heading  DDD.d   106.6   HEHDT 
 
Year   YYYY   2003   GPZDA 
 
Month   MM   10   GPZDA 
 
Day   DD   08   GPZDA 
 
Time   Seconds   SSSSS   calculated 

since       from GPGGA 
midnight 

 
Towcam Pitch  D.dd   6.00   ".03T" 

+ nose up      Field 3 
- nose down 

 
Towcam Roll  D.dd   -11.17   ".03T" 

+ Stbd Wing Up     Field 4 
- Stbd Wing Down 

 
Towcam Altitude  M.mm   1.81   ".03T" 

Metres      Field 5 
 
Towcam Depth  M.mm   46.80   ".03T" 

Metres      Field 6 
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"ORE_Data.flt" Format 
Comma delimited fields, CR/LF separated records 
 
Sample Record 
 
"125403,175.6,73.7,5.3,-68.0,28.0,0,0.4,-0.5" 
 
Field Name  Description  Example  Source Record 
 
GPS Time   HHMMSS  125403  GPGGA 
 
ORE Azimuth  DDD.d   175.6  POREB 
 
ORE Slant Range  MMM.m   73.7  POREB 
 
X    MM.m   5.3  POREB 
   metres 
 
Y    MM.m   -68.3  POREB 
   metres 
 
Z   MM.m   28.0  POREB 
   metres 
   Manual Depth 
   from ORE 
 
Error Code  Error Num.  0  POREB 
 
Ore Pitch   DD.d   0.4  POREB 
 
Ore Roll   DD.d   -0.5  POREB 

Figure 4-17 Record format for 0.5 Hertz Acoustic Tracking Data 
 
4.5.2 Export Video Frames 

A sequence of frames is exported by entering the video time of the start of the 

frames of interest and the number of seconds of video to be processed. The program 

“mosProc.c” identifies the appropriate video file from the Vid_Info.txt file, then 

generates a shell script called “tCode” which executes the transcode command to extract 

the sequence of video frames. The “tCode” script is stored in the TC_Working directory 

and is re-written each time the frame export routine is run, an example TCode script is 

shown in Figure 4-18.  According to Lindley[1991], a video image is generated by two 

sweeps of an electron beam across the display surface of a CRT device. The display of 

the video frame is interlaced with two fields of video per frame. Standard NTSC video 

consists of 525 horizontal lines of video information updated 30 times a second. Since 
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one frame occurs thirty times a second, each field requires half of that time or 1/60 of a 

second to display. The 525 lines in a frame are split equally between the two fields, thus 

each field contains 262.5 lines. Each line requires approximately 63.5 microseconds to 

display. Of the 262.5 lines of video information per field, 18.5 lines are used for vertical 

blanking and display synchronization, leaving 244 lines per field or 488 lines per frame 

for visible image information. Of the lines used for vertical blanking up to twenty lines 

per frame may be used. The TOWCAM Video is recorded in color. For the purpose of 

generating the video mosaic, it was decided to use gray-level imagery. Export of the 

frames is slowed by a factor of two, however, the reduced size of the files (by a factor of 

3) and coincident reduction in mosaic data processing volume justifies this decision.  

 
Figure 4-18  Example “tCode” shell script calling “transcode” to extract a sub-set of video frames. 

transcode -i ./VIDEO_TS/VTS_03_1.VOB --no_split -y ppm,null -z -K -o ./TC_Working/ --
nav_seek ./CON269_Line_TC6A_to_B/nav_seek_03_1.log --frame_interval 1 -c 7081-7321 

 

The command line switches used in Figure 4-18 are as follows: 

a. The –i switch identifies the input video file. The --no_split switch merges 

the stored interlaced video fields into a single frame, 

b. The frames are exported in NetPBM’s Portable Gray Map (PGM) format 

by setting transcode’s -y switch to PPM Format and setting the –K switch which selects 

black and white mode, 

c. The –z switch inverts the frames providing a heads up view of the frames 

which would otherwise appear upside down, 

d. The frames are saved in the “TC_Working” subdirectory selected with the 

–o switch in numerically sequential file names starting at “000000.pgm”. The “.pgm” 

frames exported comprised  704 columns and 480 rows of 8 bit data, 
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e. The --nav_seek switch enables the use of the designated “VOB” 

navigation file to permit random access to individual frames. 

f. The –frame_interval switch set to “1” directs that all frames will be 

exported, and 

g. The –c switch is followed by the start and stop frame number to identify 

the subset of frames to be exported from the video. The start and stop frame number are 

calculated in seconds from the first frame of the file using a frame rate of 29.97 frames 

per second. 

ImageMagick’s “display” command was then used to sequentially display every fifth 

exported frame. This allowed the operator to verify that the appropriate video sequence 

had been output. 

4.5.3 Position and Orient Video Frames 

 Horizontal positioning of the data is done in decimal degrees of Latitude and 

Longitude in WGS 84. Offsets are rotated to meters north and east, then subsequently 

converted to decimal degrees of Latitude, in the case of north offset, and decimal degrees 

of Longitude, in the case of east offset. The conversion from units of length to arc units 

on the WGS ellipsoid is performed by calculating the length in metres of a minute of arc 

at the local latitude on the ellipsoid.  The C function shown in Figure 4-19 performs the 

approximation of this length on the elliptical arc. 
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/*LenLatMin and LenLonMin functions based on Admiralty Manual of Navigation Vol1 page 44/45 */ 
/*WGS params from NIMA TR8350.2 dated 4 July 1997 */ 
/*created by J Bradford Feb 2004 */ 
 
double LenLatMin(double lat) { /* Length in metres of a minute of Lat */ 
 
double a, f, e, Len, Q, x; 
 
 x = lat*M_PI/180; /* convert to Radians */ 
 a =  6378137.00; /* WGS 84 Semi Major Axis */ 
 f = 1/298.257223563; /* WGS84 Flattening */ 
 e = sqrt((2*f-f*f)); /* eccentricity */ 
 
 Q=(1-e*e*sin(x)*sin(x)); 
 Len = a*(1-e*e)/sqrt(Q*Q*Q)*sin(M_PI/10800);/* length in metres */ 
 
 return(Len); 
 } 
 
double LenLonMin(double lat) { /* Length in metres of a minute of Long at a given Lat*/ 
 
double a, f, e, Len, Q, x; 
 
 x = lat*M_PI/180; /* convert to Radians */ 
 a =  6378137.00; /*WGS84 Semi Major Axis */ 
 f = 1/298.257223563; /* WGS84 Flattening */ 
 e = sqrt((2*f-f*f)); /* eccentricity */ 
 
 Q=(1-e*e*sin(x)*sin(x)); 
 Len = a*cos(x)/sqrt(Q)*sin(M_PI/10800);/*length in metres*/ 
 
 return(Len); 
 } 

Figure  4-19  C functions LenLatMin and LenLonMin used to calculate the length in metres of a 
minute of latitude and longitude on the ellipsoid at a given latitude generated from formulae 

obtained from HMSO(1987). 
4.5.3.1 Estimation of Camera Position 

As described in paragraph 4.4.1, navigation and telemetry data are available at a 

sample rate of one hertz while acoustic positioning data are available at one half hertz 

(see paragraph 4.5.1.3). The program newNav.c (Appendix 2 section A2.3) reads these  

data into a structured array that brackets the time period covered by the frame selection. 

The video frame rate is 29.97 hertz, given the much lower data rates for the positioning 

and orientation data, linear interpolation is used to generate an integrated positioning and 

orientation solution for each frame. The offsets for shipboard and TOWCAM vehicle 

sensors are detailed in Appendix 1. 
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The absolute positioning accuracy of the GPS and Acoustic Positioning (AP) data 

is on the order of a few meters while the resolution of the imagery is a few millimeters.  

An averaged position solution is used in an attempt to manage this disparity. The initial 

position of the shipboard AP Transducer is calculated from the GPS solution with fixed 

offsets from the GPS Antenna to the AP Transducer applied and rotated using vessel 

heading input. Vessel pitch and roll data were unavailable and not applied. Subsequent 

positions of the AP transducer were computed using an average course and speed 

calculated from the data spanning the mosaic interval. These positions were then 

corrected for heading offset using a linear interpolation between epochs of heading data.  

Position of the Towcam AP Transponder was calculated based upon an average 

azimuth of the AP Data for the entire period (generally ~30 seconds). This average was 

applied to the linearly interpolated vessel heading to generate a smoothed True Azimuth. 

The linearly interpolated slant-range data from the AP system were then converted to a 

horizontal range using the Towcam Depth measurement reduced by the AP Transducer 

depth (figure 4-20). The depth information provided by the AP system was ignored as 

this represented a manually input depth value, that was normally only updated at system 

start time. The horizontal range was used together with the True Azimuth to calculate the 

offset position in Latitude and Longitude of the TOWCAM AP Transponder.  
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Figure 4-20  Horizontal range of TOWCAM is calculated with the measured depth reduced by the 

transponder depth. Sound velocity profiles are not available thus a fixed velocity is set and no 
refraction is applied. 

The camera lens horizontal position was calculated by application of the offsets 

from the AP Transponder to the Lens. The offsets were rotated using interpolated pitch 

and roll from measured data and an estimated vehicle heading. The camera was operated 

at a low altitude (~2m) and aimed well forward of nadir (~25 degrees). One of the key 

assumptions employed in re-projection of the video frame is that the bottom is flat. This 

is often the case, however, uneven clutter conditions between those found at nadir and the 

camera image footprint can result in significant perspective distortion. Figure 4-21 

depicts the inherent problem associated with varying cluttered conditions. In order to 

mitigate this problem, a predicted altitude at frame epoch was calculated by extrapolating 

the depth at a distance ahead corresponding to the location of the Optical Center of the 

image (given a nominal altitude of 2 meters). This altitude was corrected for offset from 

sounder transducer to lens with roll and pitch corrections applied.  The estimated three-

dimensional position along with the interpolated orientation data is written out as a 

“world file” with a filename corresponding to each video frame and “.pmw” as an 

extension. 
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Figure 4-21  Horizontal Projection Error due to incorrect altitude is mitigated by applying a delay to 

the altimeter reading used, such that the altitude used is the altitude over the camera footprint. 

 
 
4.5.4 Re-Project Video Frame 

The program projNew.c (see Appendix 2 section A2.4) was used to project the 

image plane to a ground plane. Since camera heading (yaw) data was not available, the 

projection was made to a “heads up” orientation. The only rotations applied were for 

pitch and roll angle. Each frame was read sequentially, a radiometric correction applied, 

then the image was corrected for radial distortion, projected to the ground plane and then 

re-written to the Mosaic Working directory as a “.pgm” file. A line was added to the 

header of this file to include the data from the “.pmw” file. A weighted value file was 

correspondingly written as a “.pgm” file with the prefix “wts_”. The frame-to-frame 

overlap is about 98%, the weighted value file was used to select the data from each frame 

for use in the final mosaic. 

4.5.4.1   Radiometric Enhancement 

 The image data was radiometrically enhanced based on the radial distance (in 

pixels) of image pixels from the image center using the formula, 
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DN value DN value
Range

Constant

3

 

where DNvalue  is in the integer range of 0-255, Range is the radial distance from image 

center and constant is a linear enhancement factor which through trial and error was set to 

a value of 100. 

4.5.4.2 Correction of Radial Distortion 

The radial distortion correction function from Derenyi[1996] is 

rd =  k0r + k1r3
 + k2r5  

where rd  is the radial distortion,  r is the radial distance and k0 k1 k2 are coefficients 

determined through camera calibration. To correct the image coordinates for this 

distortion, the radial distance is computed as  

r = (x’2
  + y’2)1/2

where x’ and y’ are the coordinates of an image point. The corrected x and y coordinates 

are then solved using 

x = x’(1-rd/r) and y = y’(1-rd/r). 

 

4.5.4.3 Re-projection Function 

The re-projection function is also adopted from Derenyi [1996]. The coordinates 

in the image plane are defined by u rows and v columns with the image center defined as 

(u0, v0). The focal distance f is the distance from the image center to the projection center 

of the lens. The two dimensional ground plane is defined using a three dimensional right 

hand coordinate system X, Y, Z; where Z = 0. The spatial coordinates of the projection 

center L are XL, YL, ZL. The orientation angles about the X, Y, and Z axes are defined 

respectively as roll (ω), pitch(φ) and yaw(κ).  The rotation matrix Mr is defined as 
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M r

m 11

m 21

m 31

m 12

m 22

m 32

m 13

m 23

m 33  

with elements  

m 11 cos φ( ) cos κ( ).

m 12 cos ω( ) sin κ( ). sin ω( ) sin φ( ). cos κ( ).

m 13 sin ω( ) sin κ( ). cos ω( ) sin φ( ). cos κ( ).

m 21 cos φ( ) sin κ( ).

m 22 cos ω( ) cos κ( ). sin ω( ) sin φ( ). sin κ( ).

m 23 sin ω( ) cos κ( ). cos ω( ) sin φ( ). φ sin κ( ).

m 31 sin φ( )

m 32 sin ω( ) cos φ( ).

m 33 cos ω( ) cos φ( ).
 

The image coordinates are projected to the ground plane using the collinearity equations 

adapted from Derenyi [1996] where 

X X L Z Z L
m 11 v v 0. m 21 u u 0. m 31 f( ).

m 13 v v 0. m 23 u u 0. m 33 f( ).
.

Y Y L Z Z L
m 12 v v 0. m 22 u u 0. m 32 f( ).

m 13 v v 0. m 23 u u 0. m 33 f( ).
.

 

60 



It may be noted above, that  Z-ZL = the altitude of the camera lens. Once projected to the 

ground plane the image value is stored in an image array established on a pre-set pixel 

resolution of 1cm. The projected image array will have gaps in coverage which are filled 

by a routine called “fillquad” which is a “C” implementation of the Bresenham 

Algorithm [Bresenham, 1965]. The projected image, Figure 4-22, is then written out to 

file in “.pgm” format.  

 

Figure 4-22 - Original video frame (top) and re-projected frame (bottom). The black rectangle in the 
original frame delimits the middle fifty rows of the image. The re-projected image has had 

radiometric and radial corrections applied. 

 In order to improve processing speed, and owing to the redundancy/overlap in coverage 

from frame to frame, only fifty rows from the center of the frame are re-projected for 
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mosaicing. A command line switch is available should one wish to adjust the portion of 

the image re-projected. The projected image is output with two additional comment lines 

in the header,  the first to describe the camera lens xy-location in meters with respect to 

the top left corner of the image and the pixel resolution of the image, the second includes 

the data from the “.pmw” file with a $PMW prefix applied to the line. 
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Figure 4-23 - Image and Ground Plane coordinate system parameters and orientation relationships. 

4.5.4.4 Create Image of Weighted Values 

 An image of weighted values is generated for use during the mosaic process to 

provide a criterion for the selection of image data to be applied to the final mosaic image. 
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The physical dimension of the weighted image corresponds to that of the re-projected 

image while the image value is replaced with a weight value. An eight-bit weight value of 

the image is generated based on the pixel rows relationship to the middle row of the 

original image. The middle row is assigned the zero value and each subsequent row 

towards the top and bottom of the image is assigned a progressively larger value based 

upon the range of the middle pixel of the row from the center of the image. Figure 4-24 is 

the weighted value image for the frame described in Figure 4-22. 

 

Figure 4-24 Image of weight values. Owing to their closer range to the central pixel row, the pixels in 
the lower half of the image are assigned a lower (more favourable) value than those in the upper half.  

4.5.5 Patch Frames to Mosaic and Export 

 The re-projected frames were converted into OMG format and then a mosaic was 

created and exported as a geographically registered “jpeg” file which can be imported to 

ARCGIS for publishing purposes. An area for patching the mosaic together is established 

by using the shell script “corners.sh” (Appendix 2) to establish the extreme boundaries of 

the frame sequence identifying the coordinates of the upper left and lower right corners. 

The script then calls the OMG tool “make_blank” to generate the header file that will be 

used for each image. The header file was specified to use a world Mercator projection 
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and generate the image at 2cm resolution, which reduced file size and processing time by 

a factor of four. The reduction of resolution also compensated for sequential frame mis-

alignments, with little effect on the ability to resolve targets in the final product. 

4.5.5.1 Convert to OMG Format 

The pgm files (Figure 4-24) are subsequently converted to OMG format using the 

OMG “tojhc” script, manually assigned an estimated towfish azimuth, and written out as 

“.mos” files. The estimated towfish azimuth was based upon the average calculated 

course made good of the TOWCAM vehicle and can be modified by application of an 

offset from the observed optical flow of the video sequence.  

 

Figure 4-25 Re-projected section of video frame output by projNew.c. The section represents fifty 
middle rows from a single frame output at a resolution of 1cm per pixel. The orientation is camera 
head up. 

4.5.5.1.1 Manual Intervention to Improve Frame-to-Frame Correlation 

The use of an average speed in positioning of the camera along with potential 

scaling errors due to lens and sensor alignment and calibration inaccuracies will result in 

positional offsets between subsequent re-projected frames. This offset if large enough 

will distort or blur the final image. An improved relative positioning of the frames was 

achieved by  comparing them sequentially in their geo-spatial context using the OMG 

“jview” utility. The location of distinct shell and pebble features (Figure 4-25) near the 

center of every tenth frame was noted and used to establish a horizontal translation (xy 

pixel shifts) for use in frame-to-frame registration. Discrete points on boulders were not 

used as their elevation resulted in significant frame-to-frame displacement due to parallax. 
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These translations were interpolated to develop an xy shift for each frame and the “.pgm” 

files were re-written with the xy shift applied in the header. This proved to be a time-

consuming effort. For the sake of economy of effort this procedure was routinely by-

passed, as satisfactory results were achieved once adequate smoothing of the telemetry 

had been applied. 

 
Figure 4-26  Radial distortion corrected frame, projected to ground plane using pitch, roll and 

camera altitude parameters. Gaps between data points in the projected image have been filled using 
the Bresenham Algorithm. Distinctive features are picked to compare frame to frame registration. 

The circled features are shells on the seabed that pass near frame center. The annotation is the 
sequence of frames for which the particular object was used as the tracking point. 

 
4.5.5.2 Patch Frames to Mosaic 

 The OMG “patch_area” utility was then used to assemble the mosaic by 

sequentially reading the image frames and their corresponding weighting file to select 

image data for writing to the mosaic image file. Once the mosaic was created, the OMG 

tool “jview” was called to display the image. A histogram of the image was created by 

toggling the “h” key, and an appropriate stretch was  applied by using the left mouse to 

set the lower value and the right mouse to set the upper value. 
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4.5.5.3 Export Geo-registered Mosaic 

 The OMG tool “stretchacres” was used to apply a histogram stretch and export 

the mosaic to a “pgm” file. This file was converted to JPEG format using the 

“ImageMagick” “convert” command. A jpeg world file “.jpw” was generated using the 

upper left coordinate of the mosaic area, pixel resolution, and the row and column 

dimensions of the output file. The mosaics may now be read into a GIS application for 

display, analysis and presentation. A sample of individual mosaic sections exported as 

jpegs along with graphs of attitude data are contained in Appendix 3.  

 
Figure 4-27  Composite of a series of four 25 sec mosaic sections tied to form an 88 second long 

mosaic. The mosaics were imported to ArcMap and seamed using the geo-referencing tool. 

4.6 Conclusion 
 
 A mosaic has been generated from available sensor and video data based upon the 

entry by an operator of a randomly selected start time and length of video. In Figure 4-24 

a 110 meter section of the seafloor ~5 meters in width is presented. Within this mosaic 

bed-forms, individual boulders and clusters of boulders are clearly displayed. If examined 

at its full resolution, the detail of individual scallop shells can be identified. This mosaic 

provides a meso-scale view of the seafloor with a resolution an order of magnitude better 

than that available from traditional acoustic data. 
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Chapter 5 – Conclusions and Future Directions 
 

5.1 General 

This report has described video mosaic production using available sensor data  

and simple correction routines to project the video image onto a plane. The horizontal 

position accuracies of these mosaics will be consistent with that achieved in the 

production of side scan sonar mosaics. The quality of the mosaic image in terms of 

resolution, positioning and coverage could be enhanced by additional instrumentation, 

increased sensor data rates, more thorough calibration and alignment routines, and the 

incorporation of software enhancements. 

5.2  Recommended Instrumentation Enhancements 

 The following instrument additions, modifications and enhancements are 

suggested to improve the quality of mosaic production from TOWCAM. These 

improvements will also benefit the positioning associated with the still camera system. 

5.2.1 Measure Camera Heading  

 The single simplest and least expensive enhancement that would have significant 

benefit is the addition of a heading sensor to the camera vehicle. The lack of heading data 

has necessitated the estimation of camera heading using the course made good which in 

itself is an estimation. The pitch and roll sensor currently fitted could easily be replaced 

by a commonly available flux gate heading, pitch and roll sensor. If fitted with a flux gate 

sensor it would be important to calibrate the heading by verifying the sensors fixed 

alignment and performing routine self-calibration procedures. 
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5.2.2 Measure Vessel Pitch and Roll 

 Horizontal positioning accuracy of the remote vehicle could be significantly 

improved by the addition of  pitch and roll information for the towing vessel. A 

significant lever arm exists between the GPS Antenna and the Acoustic Tracking 

Transducer, only the vessel heading has been accounted for. If the pitch and roll sensor 

from the camera were replaced as per paragraph 5.2.1, it could be incorporated into the 

shipboard instrumentation to provide vessel pitch and roll data. These data would 

improve acoustic positioning solution. 

5.2.3 Collect Data at Higher Frequency 

 Navigation and telemetry data are collected at one hertz (0.5 Hertz for Acoustic 

Positioning). The video frame rate is 30 Hz necessitating interpolation to match data 

points. Increased data rates would serve to improve the frame-to-frame motion solution 

as well as the camera positioning solution. Moderately priced GPS receivers with 5 to 10 

Hz output rates as well as inexpensive heading, pitch and roll sensors with 10 Hz output 

are available. Output from the currently fitted pitch and roll sensor is at 1 Hz if the sensor 

is not replaced but is capable of a higher data rate then this should be used. TOWCAM is 

routinely operated at ranges of less than 150m (~0.2 second round trip time) from the 

acoustic tracking system and the interrogation frequency could therefore be increased 

from 0.5 Hz to the system maximum of 1 Hz. 

5.2.4 Improve Camera Calibration 

 A rudimentary calibration of the camera out of water was performed, applying a 

simple refraction index correction to model underwater conditions. A more rigorous 

calibration conducted including in water calibration would be beneficial to account for 
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the refractive index. In water calibration could be performed in a pool setting or perhaps a 

rigid calibration grid and mounting frame could be constructed to attach to the vehicle for 

testing in harbor. A dark noise reference image should also be collected, preferably 

during survey operations in pressure and temperature conditions representative of the 

survey operation. 

5.2.5 Add a Doppler Speed Log 

 Pitch and heave of the vessel are transmitted as motion via the tow-cable and 

induce local accelerations of the towed vehicle. A Doppler log would provide an avenue 

to compensate for these local velocity changes in the frame to frame motion solution. 

These logs are relatively expensive, its use could be supplanted by motion estimation 

techniques suggested in the next section. 

5.3  Recommended Software and Processing Enhancements 

 The routines applied to produce the mosaic were “cobbled together” from open 

source software, self written C programs and shell scripts, and modifications to Ocean 

Mapping Group processing tools. Suggestions to enhance the final product, as well as to 

streamline and simplify its generation, are outlined in this section. 

5.3.1 Use Image Motion Estimation 

 This project did not seek to use image motion estimation techniques, relying only 

on sensor based data, interpolations, medians and means. The Motion2D software library 

described at paragraph 3.2.1.2.1 could be incorporated to enhance frame to frame 

alignment. 

69 



5.3.2  Adjust OMG Header to Match Frame Mosaic  

 Each projected frame image is written to a mosaic file using the header for the 

entire mosaic coverage area. The individual frames cover a minute portion of the mosaic 

area and thus most of the frame mosaic contains no data. This practice is wasteful of disk 

space and significantly slows processing due to file size, disk access delay and the 

requirement to seek operator input. If each frame mosaic had a header corresponding to 

its coverage processing time would be significantly reduced. 

5.3.3 Adapt to Common User Interface 

 The user interface is from command line entry and toggle screen selection. The 

sonar data at BIO is processed using a TK/TCL interface called AGCMENU. The 

processing routines described here could be modified to be accessed through AGCMENU 

thereby simplifying the users task of generating mosaics. 

5.3.4 Incorporate Dark Reference with Radiometric Correction 

 A dark noise reference image was not available for application to the radiometric 

correction function. This reference image should be recorded and incorporated to the 

processing routine. 

5.4 Future Directions 

 The utility of the mosaics in seafloor reconnaissance will serve to drive further 

improvements and development in this field. The increase in underwater visibility 

achieved by the LUCIE system promises a reliability of coverage that will make towed 

video into a tool for routine use in localized mapping and search operations. Further 

exploration of the use of TOWCAM in this type of role is warranted as it provides an 

inexpensive avenue to develop operational experience. This experience and expertise will 
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enhance the identification system operational and engineering requirements for an 

effective naval video seafloor surveillance system. 
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APPENDIX 1-  SENSOR OFFSETS 

A1.1 Shipboard GPS and Acoustic Tracking Transducer Geometry 

The MX412 GPS receiver was used by CCGS HUDSON throughout the cruise. 

The antenna is 25.0m forward and 2.9m to starboard of the Acoustic Tracking Transducer. 

The Acoustic Tracking Transducer’s draft is 6.0m. 

Water Line

GPS Antenna

6.0m

~ 15m

Fwd

25.0m

Acoustic
Tracking
Transducer

 

Ship Center Line

GPS
Antenna

Acoustic
Tracking
Transducer

Fwd0.4m
3.3m

25.0m

2.9m

 
Figure A1-1 CCGS Hudson sensor layout, profile and plan views after McKeown 2003. 
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A1.2 TOWCAM Vehicle Geometry 
 

Table A1-1 Towcam Sensor Offsets after McKeown 2003 

Sensor Fwd of Stern Stbd of 
Centreline 

Ht. Above 
Base Angle 

Altimeter 825.5mm 0mm 203.2mm vertical 

Video camera 260.4mm 0mm 95.3mm 250 fwd of 
vertical 

Still camera 482.6mm 0mm 127mm 80 fwd of 
vertical 

Strobe 1079.5mm 0mm 215.9mm 120 aft of 
vertical 

Laser scale 292.1mm 0mm 158.8mm 250 fwd of 
vertical 

P & R sensors 127mm 317.5mm 330.2mm Horizontal 
Acoustic 
Beacon 460.4mm 80mm 585.3mm Horizontal 

 
Note: 
Distances are measured to lenses of optical devices, to altimeter transducer face and to 
after end cap of pitch and roll sensor pressure case. The video camera CCD is approx. 
200mm aft of the Trackpoint beacon transducer, 80mm to port of it and 490mm below it. 
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Appendix 2 - Program Source Code & Shell Scripts 
 
A2.1 mosProc.c 
 
  
/* ------------------------------------------------------------ */ 
/*  mosProc.c    */ 
/*  TOWCAM Video Mosaic Processor */ 
/*  J. Bradford 2004   */ 
/*       */ 
/*   UNB GGE   */ 
/*       */ 
/*       */ 
/*   1 Apr 04   */ 
/*       */ 
/* This program provides a toggle  

selection menu to prepare the  nav and  
telemetry data, select video for export 
and project selected frames to a plane */ 

/* ------------------------------------------------------------ */ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <ctype.h> 
#include <math.h> 
#include <string.h> 
 
 
 
int startTime, mosLen, frameInt, option_select; 
 
FILE *infile, *outfile, *erroutfile, *vidinfo; 
 
unsigned char in_strg[128] ="./"; 
char sysCall[256]= "transcode -i ./VIDEO_TS/";/*used by loadVidInf and 
export_frame*/ 
const char delimiter[] = ","; 
char *token; 
char * line = NULL; 
 size_t len = 0; 
 ssize_t read; 
 
typedef struct camera_telem{ 
  int Time; 
  float Pitch; 
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  float Roll; 
  float Yaw; 
  float Alt; 
  } camera_telem; 
 
typedef struct vid_inf{ 
  const char *Name; 
  float Begin; 
  float End; 
  const char *NavDir; 
  const char *NavLog; 
  } vid_inf; 
 
vid_inf Vid; 
camera_telem camAtt; 
 
 float vidStartHr, vidStartMin, vidStartSec; 
 float mosStartHr, mosStartMin, mosStartSec; 
 double vidOffSec; 
 int startFrame, numFrames; 
 
 
 
main () { 
 
/*----------------eo prelim file nauseau----------------------------------*/ 
 
/*----- Start of Program Flow --------*/ 
/*linearly interpolated data*/ 
/*startTime = 0; 
mosLen = 5;*/ 
frameInt = 1; 
 
 
option_page(); 
 
exit (0); 
 
} 
 
 
/*   end of main program *//*   end of main program *//*   end of mainprogram */ 
 
int err_exit(){ 
 
 printf("Exit due to Error, major bummer! \n"); 
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exit (0); 
} /* eo error exit */ 
 
/*---------------------------------------------------------------*/ 
 
int getTelem() { 
 
 printf("%s\n", in_strg); 
 strcat(in_strg,Vid.NavDir); 
 printf("%s\n", in_strg); 
 strcat(in_strg,"/mosTrack.txt"); 
 printf("%s\n", in_strg); 
 
 infile = fopen (in_strg,"r"); 
 if (!infile) { 
  printf (" Could not open %s for reading, bummer \n", in_strg); 
  err_exit(); 
 } 
 
while  (((read = getline(&line, &len, infile)) != -1) && 
          camAtt.Time != startTime) { 
 
  /*printf("%s", line);*/ 
   token = strtok (line,delimiter); 
  camAtt.Time = atoi(token); 
  token = strtok (NULL,delimiter);/*decimal deg north*/ 
  token = strtok (NULL,delimiter);/*decimal deg east*/ 
  token = strtok (NULL,delimiter);/* Lat */ 
  token = strtok (NULL,delimiter);/*Lon*/ 
  token = strtok (NULL,delimiter);/*Hdg*/ 
  token = strtok (NULL,delimiter);/*smg*/ 
  token = strtok (NULL,delimiter);/*cmg*/ 
  token = strtok (NULL,delimiter);/*yr*/ 
  token = strtok (NULL,delimiter);/*mo*/ 
  token = strtok (NULL,delimiter);/*day*/ 
  token = strtok (NULL,delimiter);/*sec*/ 
  token = strtok (NULL,delimiter);/*attPitch*/ 
  camAtt.Pitch = atof(token); 
  token = strtok (NULL,delimiter);/*attRoll*/ 
  camAtt.Roll = atof(token); 
  token = strtok (NULL,delimiter);/*alt*/ 
  camAtt.Alt = atof(token); 
  token = strtok (NULL,delimiter);/*depth*/ 
  } 
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 printf("Time: %d %.2f %.2f %.2f\n", camAtt.Time, camAtt.Pitch, 
camAtt.Roll,camAtt.Alt); 
 fclose(infile); 
return(0); 
} /* eo get telem*/ 
 
int loadVidInf() { 
 
 vidinfo = fopen("Vid_Info.txt","r"); 
while  ((read = getline(&line, &len, vidinfo)) != -1) { 
 token = strtok (line,delimiter); 
 Vid.Name = token; 
 token = strtok (NULL,delimiter); 
 Vid.Begin = atof(token); 
 token = strtok (NULL,delimiter); 
 Vid.End = atof(token); 
 token = strtok (NULL,delimiter); 
 Vid.NavDir = token; 
 token = strtok (NULL,delimiter); 
 Vid.NavLog = token; 
 
 if((Vid.Begin) < startTime && (Vid.End) > startTime) { 
 
  fclose(vidinfo); 
  printf("Video File Found = %s\n",Vid.Name); 
  strcat(sysCall,Vid.Name); 
  strcat(sysCall,".VOB --no_split -y ppm,null -z -K -o ./TC_Working/ --
nav_seek ./"); 
 
  strcat(sysCall,Vid.NavDir); 
  strcat(sysCall,Vid.NavLog); 
 
  printf("%s\n", sysCall); 
 
  return(0); 
  } 
 printf("%s.VOB\t%.2f\t%.6d\t%.2f\n", Vid.Name, Vid.Begin, startTime, 
Vid.End); 
 
 } 
 printf("Video File Not Found, exiting..\n"); 
 exit(0); 
}/* eo loadVidInfo */ 
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int option_page () { /*system("clear\n");*/ 
 printf("\n\t\t\t  TOWCAM Video Mosaic Processor\n"); 
 printf("\t\t\t\tJ. Bradford 2004\n\n"); 
 printf("\tSelection Menu:\n"); 
 printf("\n\t\t1\t-Merge Shipboard and Towbody Navigation and Telemetry 
Data\n"); 
 printf("\t\t2\t- Select Video Clip Start and Length:\n\t\t\tStart Time= 
%.6d\tLength= %d sec \n",startTime, mosLen); 
 printf("\t\t3\t- Export Video Frames\n"); 
 printf("\t\t4\t- View Extracted Frame Animation\n"); 
 printf("\t\t5\t- Process Nav and link to Frames\n"); 
 printf("\t\t6\t- Project Frames and Insert Nav to Header\n"); 
 printf("\n\t\t0\t-Exit Program;\n\n\t\t"); 
 
 scanf("%d", &option_select); 
 
 switch (option_select) { 
 
 case 0 : exit (0); 
 break; 
 
 case 1 : prepNav(); 
 break; 
  
 case 2 : printf("Enter New Start Time HHMMSS\n\t"); 
    scanf("%d", &startTime); 
 
 
  printf("Enter New Mosaic Length in Seconds\n\t"); 
    scanf("%d", &mosLen); 
 
 
 option_page(); 
 
 case 3 : loadVidInf(); 
   getTelem(); 
  getTimeBounds(); 
  export_frame(); 
; 
 break; 
 
 case 4 :system ("echo Loading Sub-set of Frames standby...\n echo right click for 
menu!\nanimate TC_Working/0*[1,6].pgm\n"); 
 
 break; 
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 case 5: system("waz2"); 
 
 break; 
 case 6 : bulk_Proj(); 
 
 break; 
  
 } /* eo switch */ 
printf("\n\tOption %d completed!", option_select); 
 
 
 option_page(); 
 } /* eo option_page*/ 
 
int export_frame() { 
 
system("rm -f ./TC_Working/*"); 
outfile = fopen("TC_Working/tCode","wb"); 
 
fprintf(outfile,"%s.log --frame_interval %d -c %d-%d \n",sysCall, 
frameInt,startFrame,startFrame+numFrames); 
fclose(outfile); 
system("chmod +x TC_Working/tCode"); 
system("./TC_Working/tCode"); 
 
outfile = fopen("TC_Working/pgm.inf","wb"); 
fprintf(outfile,"%.2f\n",mosStartSec); 
fprintf(outfile,"%d\n",numFrames); 
fclose(outfile); 
 
return(0); 
} 
 
int getTimeBounds() { 
 
 
 printf("\n Video File StartTime (HHMMSS.ss)= %.2f\n",Vid.Begin); 
 
 printf("\n Mosaic StartTime (HHMMSS.ss)= %d\n", startTime); 
 
 vidStartHr = floor(Vid.Begin/10000); 
 vidStartMin = floor((Vid.Begin-vidStartHr*10000)/100); 
 vidStartSec = Vid.Begin-vidStartHr*10000-vidStartMin*100; 
 vidStartSec = vidStartSec+vidStartMin*60+vidStartHr*3600; 
 
 mosStartHr = floor(startTime/10000); 
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 mosStartMin = floor((startTime-mosStartHr*10000)/100); 
 mosStartSec = startTime-mosStartHr*10000-mosStartMin*100; 
 mosStartSec = mosStartSec+mosStartMin*60+mosStartHr*3600; 
 
 vidOffSec = mosStartSec - vidStartSec; 
 
 printf("Vstart %f\t mStart %f\t %f\n", vidStartSec, mosStartSec, vidOffSec); 
 
 printf("\n Enter Time Length to be Processed (seconds)\n"); 
 
 while(mosLen <=0) { 
   scanf("%f", &mosLen); 
   } 
 startFrame = floor(vidOffSec*29.97/frameInt); 
 numFrames = ceil(mosLen*29.97/frameInt); 
 printf("Start Frame %d\tNum Frames %d\n", startFrame, numFrames); 
 return(0); 
 } 
 
int bulk_Proj() { 
 
FILE *infilelist; 
char *innamelist, *inname; 
char *linelist = NULL; 
 innamelist ="./TC_Working/pgmlist.txt"; 
 infilelist = fopen(innamelist,"rb"); 
 system("rm -f ./TC_Working/curProj"); 
 system("rm -f ./MOS_Working/*.*"); 
 while ((read = getline(&linelist, &len, infilelist)) != -1)  { 
 inname = strsep(&linelist,"m");/* gets rid of linefeed return */ 
 
 
outfile = fopen("TC_Working/curProj","wb"); 
fprintf(outfile,"proj -in TC_Working/%sm -out MOS_Working/%sm\n",inname,inname); 
fprintf(outfile,"proj -in TC_Working/%sm -out MOS_Working/%sm -wts 
MOS_Working/wts_%sm\n",inname,inname,inname); 
fclose(outfile); 
system("chmod +x TC_Working/curProj"); 
system("./TC_Working/curProj"); 
linelist = NULL; 
 } 
 
return(0); 
} 
int prepNav(){ 
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system("ls -R */*.03e > TC_Working/03eList.txt"); 
infile = fopen("TC_Working/03eList.txt","rb"); 
 
line = NULL; 
 
char dircom[256]; 
char *syscom, *path; 
 
 
while((read = getline(&line, &len, infile)) != -1){ 
 
 
 
strcpy(dircom,"cd "); 
path = strsep(&line,"/"); 
strcat(dircom, path); 
strcat(dircom,"\n../Merge_Data\n");/*shell script is below*/ 
system(dircom); 
printf("%s\n",dircom); 
 
 }/* EO while */ 
fclose(infile); 
return(0); 
} 
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A2.2 filtNav.c 
/**********/ 
/* filtNav.c */ 
/* j bradford 29 Mar 2004 */ 
/* performs a five point median filter on ORE Azimuth */ 
/* called as part of Merge_Data script which in turn is called mosProc.c*/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <ctype.h> 
#include <math.h> 
#include <string.h> 
 
typedef struct mos_telem{ 
  int Time; 
  double North; 
  double East; 
  double Lat; 
  double Lon; 
  float Hdg; 
  float Smg; 
  float Cmg; 
  int Yr; 
  int Mo; 
  int Day; 
  double Sec; 
  float Pitch; 
  float Roll; 
  double Yaw; 
  float Alt; 
  float Depth; 
  } mos_telem; 
 
 mos_telem Nav0; 
 mos_telem Nav1; 
 mos_telem Nav2; 
 mos_telem Nav3; 
 mos_telem Nav4; 
 mos_telem Nav5; 
 
 
 
typedef struct ore_dat{ 
 int Time; 
 double Az; 
 double Rge; 
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 float x; 
 float y; 
 float z; 
 int err; 
 
 } ore_dat; 
 
 ore_dat Ore0; 
 ore_dat Ore1; 
 ore_dat Ore2; 
 ore_dat Ore3; 
 ore_dat Ore4; 
 ore_dat Ore5; 
 
const char delimiter[] = ","; 
char *token; 
char * line = NULL; 
 size_t len = 0; 
 ssize_t read; 
 
int counter =0; 
int i, j; 
int filterPoints =5; 
double  a, temp; 
double *data, *data1; 
 
FILE *infile, *outfile; 
char *inname, *outname; 
 
main (){ 
 
inname = "ORE_Data.tmp"; 
outname= "ORE_Data.flt"; 
do_ore(); 
 
/*inname = "mosTrack.txt"; 
outname = "mosTrack.flt"; 
do_att();*/ 
 
exit(0); 
}/*eo main*/ 
 
 
 
int do_ore(){ 
infile= fopen(inname,"rb"); 
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outfile = fopen(outname,"wb"); 
 
data = (double *) malloc(filterPoints* sizeof(double)); 
while  (((read = getline(&line, &len, infile)) != -1)){ 
 
token = strtok (line,delimiter); 
Ore0.Time = atoi(token); 
token = strtok (NULL,delimiter); 
Ore0.Az = atof(token); 
token = strtok (NULL,delimiter); 
Ore0.Rge =atof(token); 
token = strtok (NULL,delimiter); 
Ore0.x =atof(token); 
token = strtok (NULL,delimiter); 
Ore0.y =atof(token); 
token = strtok (NULL,delimiter); 
Ore0.z =atof(token); 
token = strtok (NULL,delimiter); 
Ore0.err = atoi(token); 
 
counter++; 
 
Ore5=Ore4; 
Ore4=Ore3; 
Ore3=Ore2; 
Ore2=Ore1; 
Ore1=Ore0; 
 
if (counter > 3){ 
data[0] = Ore1.Az; data[1] = Ore2.Az; data[2] = Ore3.Az; data[3] = Ore4.Az; 
 data[4] = Ore5.Az; 
 
for (i= filterPoints-1; i >=0; i--){ 
 for (j=1; j<=i; j++){ 
  if (data[j-1] > data[j]){ 
   temp = data[j-1]; 
   data[j-1] = data[j]; 
   data[j] = temp; 
    } 
   } 
  } 
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fprintf(outfile,"%.6d,%.1f,%.1f,%.1f,%.1f,%.1f,%d\n",Ore3.Time,data[2],Ore3.Rge,Ore3
.x,Ore3.y,Ore3.z,Ore3.err); 
 } 
else if (counter < 2 ) 
{fprintf(outfile,"%.6d,%.1f,%.1f,%.1f,%.1f,%.1f,%d\n",Ore0.Time,Ore0.Az,Ore0.Rge,O
re0.x,Ore0.y,Ore0.z,Ore0.err); 
 } 
}/*eo while read*/ 
fprintf(outfile,"%.6d,%.1f,%.1f,%.1f,%.1f,%.1f,%d\n",Ore0.Time,Ore0.Az,Ore0.Rge,Ore
0.x,Ore0.y,Ore0.z,Ore0.err); 
free(data); 
fclose(infile); 
fclose(outfile); 
counter=0; 
return(0); 
} 
 
 
int do_att(){ 
infile= fopen(inname,"rb"); 
outfile = fopen(outname,"wb"); 
 
data = (double *) malloc(filterPoints* sizeof(double)); 
data1 = (double *) malloc(filterPoints* sizeof(double)); 
 
while  (((read = getline(&line, &len, infile)) != -1)){ 
 
  token = strtok (line,delimiter);/* time */ 
  Nav0.Time = atoi(token); 
  token = strtok (NULL,delimiter);/*Decimal Degrees Lat Lon (North 
East)*/ 
  Nav0.North = atof(token); 
  token = strtok (NULL,delimiter); 
  Nav0.East = atof(token); 
  token = strtok (NULL,delimiter);/*Geo Lat Lon DDMM.mmmm*/ 
  Nav0.Lat = atof(token); 
  token = strtok (NULL,delimiter); 
  Nav0.Lon = atof(token); 
  token = strtok (NULL,delimiter);/* Heading Speed Cmg */ 
  Nav0.Hdg = atof(token); 
  token = strtok (NULL,delimiter); 
  Nav0.Smg = atof(token); 
  token = strtok (NULL,delimiter); 
  Nav0.Cmg = atof(token); 
  token = strtok (NULL,delimiter);/* Y M D */ 
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  Nav0.Yr = atoi(token); 
  token = strtok (NULL,delimiter); 
  Nav0.Mo = atoi(token); 
  token = strtok (NULL,delimiter); 
  Nav0.Day = atoi(token); 
  token = strtok (NULL,delimiter);/* Seconds */ 
  Nav0.Sec = atof(token); 
  token = strtok (NULL,delimiter);/* Pitch */ 
  Nav0.Pitch = atof(token); 
  token = strtok (NULL,delimiter);/* roll */ 
  Nav0.Roll = atof(token); 
  token = strtok (NULL,delimiter);/* alt */ 
  Nav0.Alt = atof(token); 
  token = strtok (NULL,delimiter);/* depth */ 
  Nav0.Depth = atof(token); 
counter++; 
 
Nav5=Nav4; 
Nav4=Nav3; 
Nav3=Nav2; 
Nav2=Nav1; 
Nav1=Nav0; 
 
if (counter > 3){ 
data[0] = Nav1.Pitch; data[1] = Nav2.Pitch; data[2] = Nav3.Pitch; data[3] = Nav4.Pitch; 
 data[4] = Nav5.Pitch; 
data1[0] = Nav1.Roll; data1[1] = Nav2.Roll; data1[2] = Nav3.Roll; data1[3] = Nav4.Roll; 
 data1[4] = Nav5.Roll; 
 
for (i= filterPoints-1; i >=0; i--){ 
 for (j=1; j<=i; j++){ 
  if (data[j-1] > data[j]){ 
   temp = data[j-1]; 
   data[j-1] = data[j]; 
   data[j] = temp; 
    } 
   } 
  } 
 
 
for (i= filterPoints-1; i >=0; i--){ 
 for (j=1; j<=i; j++){ 
  if (data1[j-1] > data1[j]){ 
   temp = data1[j-1]; 
   data1[j-1] = data1[j]; 
   data1[j] = temp; 
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    } 
   } 
  } 
 
 
 
fprintf(outfile,"%.6d,%.10f,%.10f,%.4f,%.4f,%.1f,%.1f,%.1f,%d,%d,%d,%.0f,%.3f,%.3f,
%.3f,%.3f\n", 
Nav3.Time,Nav3.North,Nav3.East,Nav3.Lat,Nav3.Lon,Nav3.Hdg,Nav3.Smg,Nav3.Cmg,
Nav3.Yr,Nav3.Mo,Nav3.Day, Nav3.Sec,data[2],data1[2],Nav3.Alt,Nav3.Depth); 
 
 } 
else if (counter < 2 ) 
{fprintf(outfile,"%.6d,%.10f,%.10f,%.4f,%.4f,%.1f,%.1f,%.1f,%d,%d,%d,%.0f,%.3f,%.3
f,%.3f,%.3f\n", 
Nav0.Time,Nav0.North,Nav0.East,Nav0.Lat,Nav0.Lon,Nav0.Hdg,Nav0.Smg,Nav0.Cmg,
Nav0.Yr,Nav0.Mo,Nav0.Day, Nav0.Sec,Nav0.Pitch,Nav0.Roll,Nav0.Alt,Nav0.Depth); 
 } 
}/*eo while read*/ 
 
fprintf(outfile,"%.6d,%.10f,%.10f,%.4f,%.4f,%.1f,%.1f,%.1f,%d,%d,%d,%.0f,%.3f,%.3f,
%.3f,%.3f\n", 
Nav0.Time,Nav0.North,Nav0.East,Nav0.Lat,Nav0.Lon,Nav0.Hdg,Nav0.Smg,Nav0.Cmg,
Nav0.Yr,Nav0.Mo,Nav0.Day, Nav0.Sec,Nav0.Pitch,Nav0.Roll,Nav0.Alt,Nav0.Depth); 
 
free(data); 
fclose(infile); 
fclose(outfile); 
counter=0; 
return(0); 
} 
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A2.3 newNav.c 
/*----------------------------------------------*/ 
/* newNav.c*/ 
/*       J bradford 2004    */ 
/* Interpolator and Nav Process 
  function development module for Towcam 
 newNav.c 
 2 Apr 04 
 16 May 04 incorporated altitude delay algorithm 
     and camera yaw algorithm             */ 
/*----------------------------------------------*/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <ctype.h> 
#include <math.h> 
#include <string.h> 
 
int startTime,  timeLen, frameInt, x; 
char x_char; 
char *nav, *pmwname, *path; 
double vidOffSec, ore_xoff, ore_yoff, ore_zoff, alt_delay; 
float mosLen, frameTime; 
int startFrame, numFrames, c, d, j, k, delay; 
double north_old, east_old, time_old, fxDist, fyDist, fxOld, fyOld; 
float xrotateYPR(double xi, double yi, double zi, double yaw, double pitch, double roll); 
float yrotateYPR(double xi, double yi, double zi, double yaw, double pitch, double roll); 
float zrotateYPR(double xi, double yi, double zi, double yaw, double pitch, double roll); 
double LenLatMin(double lat), LenLonMin(double lat); 
double Lin_interp (double x0, double x1, double x2, double y0, double y1) ; 
int stdtime_days_in_month[12] = {31,28,31,30,    /* j f m a */ 
                                 31,30,31,31,    /* m j j a */ 
                                30,31,30,31};    /* s o n d */ 
int stdtime_dmy_to_jul_day (short day, short month, short year); 
short jday; 
void write_pmw(); 
typedef struct mos_telem{ 
  int Time; 
  double North; 
  double East; 
  double Lat; 
  double Lon; 
  float Hdg; 
  float Smg; 
  float Cmg; 
  int Yr; 
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  int Mo; 
  int Day; 
  double Sec; 
  float Pitch; 
  float Roll; 
  double Yaw; 
  float Alt; 
  float Depth; 
  } mos_telem; 
 
 
  mos_telem ship[64]; 
 mos_telem shipAvg; 
 mos_telem orePos; 
 mos_telem camPos; 
 
typedef struct ore_dat{ 
 int Time; 
 double Az; 
 double Rge; 
 float x; 
 float y; 
 float z; 
 int err; 
 double Sec; 
 } ore_dat; 
 
 ore_dat Ore[64]; 
 ore_dat OreTemp; 
 ore_dat Interp_Ore;/*linearly interpolated data*/ 
double fish_xyRge, fish_z, oreAz; 
 
 float i ;/*time increment variable*/ 
const char delimiter[] = ","; 
const char workpath[]= "./TC_Working/"; 
char *token; 
char * line = NULL; 
 size_t len = 0; 
 ssize_t read; 
 char *tokenlist; 
char * linelist = NULL; 
const char listdelim[] ="."; 
 size_t lenlist = 0; 
 ssize_t readlist; 
 
char pmwnew[128]; 
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FILE *infile,  *infilelist, *pmwfile; 
 
char *inname, *innamelist, *pmwout; 
 
 
/*--------------Begin Main ---------------------*/ 
/*--------------Begin Main ---------------------*/ 
/*--------------Begin Main ---------------------*/ 
/*--------------Begin Main ---------------------*/ 
 
main() { 
 
delay=2;/*delay to use later altitude (ie future alt)for towcam flat earth re-Projection*/ 
set_initial_values();/* loads start time,paths,gets data, sets fixed offsets, does some 
averaging*/ 
j=0;k=0; 
system("cd ./TC_Working\nls *.pgm > pgmlist.txt\ncd ..\n"); 
innamelist ="./TC_Working/pgmlist.txt"; 
infilelist = fopen(innamelist,"r"); 
jday = stdtime_dmy_to_jul_day (ship[j].Day, ship[j].Mo, ship[j].Yr); 
 
for (i=0;i<mosLen/30;i=i+1/29.97){ 
 
frameTime = vidOffSec+i; 
if(frameTime == vidOffSec) {ore_pos();camPos.Depth = orePos.Depth;} 
if(frameTime >= ship[j+1].Sec) j++; 
if(frameTime >= Ore[k+1].Sec) k++; 
cam_pos(); 
 
 
 
write_pmw(); 
 
}/*eo for i<mosLen/30*/ 
 
 
fclose(infilelist); 
 
printf("Normal Exit\n"); 
exit(0); 
 
} /* eo Main */ 
/* eo Main *//* eo Main *//* eo Main ***********************/ 
/*------------------ eo Main *//* eo Main *//* eo Main ----------------------*/ 
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int set_initial_values(){ 
 inname ="./TC_Working/pgm.inf"; 
 infile = fopen(inname,"rb"); 
 if(!infile) {printf("%s not found ... I Quit!\n",inname); exit(0);} 
 (read = getline(&line, &len, infile)); 
 
 
 
 vidOffSec = atof(line); /* sets the start time that will be passed to the function */ 
 
 (read = getline(&line, &len, infile)); 
 mosLen = atof(line);/* # of frames to be mosaiced */ 
 timeLen = (mosLen/30); 
        printf("%.3f sec %.0f frames \n", vidOffSec,mosLen); 
 fclose(infile); 
 
 load_merged_Nav(); 
 load_Ore(); 
 load_offsets(); 
 ship_avg(); 
 
 return(0); 
 }/* eo set_initial_values */ 
 
int load_merged_Nav(){ 
        readVidInf(); /* locates path to data*/ 
 inname = ""; 
 inname = nav; 
 
 inname = strcat(inname,"mosTrack.txt"); /*    */ 
 
 infile = fopen (inname,"rb"); 
 
 if (!infile) { 
 
  printf (" Could not open %s for reading, bummer.... man :(\n", inname); 
  exit(-1); 
 }/* eo if !infile*/ 
 
 
 
 while  (((read = getline(&line, &len, infile)) != -1) && (ship[0].Sec<=vidOffSec-
2)) { 
 
             parse_Nav(0); 
  }/* eo while read*/ 
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  parse_Nav(1); 
  { 
  for(c=2;c<=timeLen+delay+1;c++){ 
    (read = getline(&line, &len, infile));     
   parse_Nav(c); 
 
   } 
  } 
 for(c=0;c<=timeLen+delay+1;c++) 
 printf("ship[%d]: %d,%.10f,%.10f,%.1f\n", c, ship[c].Time,ship[c].North, 
ship[c].East, ship[c].Alt); 
 fclose(infile); 
 return(0); 
 }/* eo load_merged_Nav*/ 
 
int parse_Nav(int i){ 
 
 
/*   Parse a  delimited text file */ 
  token = strtok (line,delimiter);/* time */ 
  ship[i].Time = atoi(token); 
  token = strtok (NULL,delimiter);/*Decimal Degrees Lat Lon (North 
East)*/ 
  ship[i].North = atof(token); 
  token = strtok (NULL,delimiter); 
  ship[i].East = atof(token); 
  token = strtok (NULL,delimiter);/*Geo Lat Lon DDMM.mmmm*/ 
  ship[i].Lat = atof(token); 
  token = strtok (NULL,delimiter); 
  ship[i].Lon = atof(token); 
  token = strtok (NULL,delimiter);/* Heading Speed Cmg */ 
  ship[i].Hdg = atof(token); 
  token = strtok (NULL,delimiter); 
  ship[i].Smg = atof(token); 
  token = strtok (NULL,delimiter); 
  ship[i].Cmg = atof(token); 
  token = strtok (NULL,delimiter);/* Y M D */ 
  ship[i].Yr = atoi(token); 
  token = strtok (NULL,delimiter); 
  ship[i].Mo = atoi(token); 
  token = strtok (NULL,delimiter); 
  ship[i].Day = atoi(token); 
  token = strtok (NULL,delimiter);/* Seconds */ 
  ship[i].Sec = atof(token); 
  token = strtok (NULL,delimiter);/* Towfish Pitch */ 
  ship[i].Pitch = atof(token); 
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  token = strtok (NULL,delimiter);/* Towfish roll */ 
  ship[i].Roll = atof(token); 
  token = strtok (NULL,delimiter);/* towfish alt */ 
  ship[i].Alt = atof(token); 
  token = strtok (NULL,delimiter);/* towfish depth */ 
  ship[i].Depth = atof(token); 
 
  return(0); 
 
  }/*eo parse_Nav */ 
 
int load_Ore(){ 
 readVidInf(); 
 inname = ""; 
 inname = nav; 
 printf("%s\n", nav); 
 inname = strcat(inname,"ORE_Data.flt"); 
 infile = fopen (inname,"r"); 
 
 if (!infile) { 
  printf (" Could not open %s for reading, bummer.... man :(\n", inname); 
  exit(-1); 
  } 
 
 
 while  (((read = getline(&line, &len, infile)) != -1) &&  OreTemp.Sec < 
vidOffSec-1){ 
 
    parse_Ore(0); 
  }/*eo while read < vidOffSec*/ 
 
 parse_Ore(1); 
 
 for (d=1;d<=floor(timeLen/2);d++){ 
  read=getline(&line, &len, infile); 
  parse_Ore(d+1); 
  } 
  /*{printf("%s\n", line); /* spit out the input line*/ 
 
 
 fclose(infile); 
 average_Ore_Az(); 
 return(0); 
 }/*eo load_Ore */ 
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int parse_Ore(int i){ 
 
  token = strtok (line,delimiter);/* time */ 
  Ore[i].Time = atoi(token); 
  token = strtok (NULL,delimiter); 
  Ore[i].Az = atof(token); 
  token = strtok (NULL,delimiter); 
  Ore[i].Rge = atof(token); 
  token = strtok (NULL,delimiter); 
  Ore[i].x = atof(token); 
  token = strtok (NULL,delimiter); 
  Ore[i].y = atof(token); 
  token = strtok (NULL,delimiter); 
  Ore[i].z = atof(token); 
  token = strtok (NULL,delimiter); 
  Ore[i].err = atoi(token); 
  Ore[i].Sec = calc_sec(Ore[i].Time); 
 OreTemp = Ore[i]; 
 return(0); 
 }/*eo parse_Ore*/ 
 
int average_Ore_Az(){ 
  oreAz=0.0; 
  for (j=0; j<d+1;j++){ oreAz=oreAz+Ore[j].Az; 
 printf("Ore[%d]: %d,%.1f,%.2f,%.3f sec\n",j, Ore[j].Time,Ore[j].Az, Ore[j].Rge, 
Ore[j].Sec); 
  } 
  oreAz=oreAz/(d+1); 
printf("OreAz %d pts %.2f deg\n", d+1, oreAz); 
 
 }/*eo average_Ore_Az*/ 
 
 
int load_offsets(){ 
  ore_xoff =-25.0; /* ore offset values for CCGS HUDSON*/ 
  ore_yoff =2.9; 
  ore_zoff =6.0; 
 
 
 return(0); 
 }/*eo load_offsets()*/ 
 
int ship_avg(){ 
 
 shipAvg = ship[0]; 
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 double yDist, xDist; 
 yDist= (ship[timeLen].North-ship[0].North)*60*LenLatMin(ship[0].North); 
 xDist= (ship[timeLen].East-ship[0].East)*60*LenLonMin(ship[0].North); 
 shipAvg.Smg= pow(yDist,2) + pow(xDist,2); 
 shipAvg.Smg= sqrt(shipAvg.Smg) / (ship[timeLen].Sec - ship[0].Sec) ; /* meters 
per sec */ 
 shipAvg.Cmg= atan2(xDist,yDist)*180/M_PI; 
 printf("shipAvg.Smg %.3f m/s shipAvg.Cmg %.3f deg\n",shipAvg.Smg, 
shipAvg.Cmg); 
 printf("%.3f my %.3f mx\n",yDist, xDist); 
 return(0); 
 } /* eo ship_avg*/ 
 
 
int ore_pos(){ 
 
 orePos = ship[j]; 
 
/* apply shipboard offsets antenna to transducer */ 
 
orePos.North = ship[j].North + xrotateYPR(ore_xoff, ore_yoff, ore_zoff, ship[j].Hdg, 0.0, 
0.0)/(60*LenLatMin(ship[j].North)); 
orePos.East = ship[j].East + yrotateYPR(ore_xoff, ore_yoff, ore_zoff, ship[j].Hdg, 0.0, 
0.0)/(60*LenLonMin(ship[j].North)); 
orePos.Depth = ship[j].Depth - zrotateYPR(ore_xoff, ore_yoff, ore_zoff, ship[j].Hdg, 0.0, 
0.0); 
printf("orePos.North %.10f orePos.East %.10f orePos.Depth %.3f\n", orePos.North, 
orePos.East, orePos.Depth); 
 }/* eo ore_pos */ 
 
 
int cam_pos() { 
 double xDist, yDist; 
Interp_Ore.Rge= Lin_interp(Ore[k].Sec,Ore[k+1].Sec, frameTime, 
Ore[k].Rge,Ore[k+1].Rge); 
fish_z = Lin_interp(ship[j].Sec,ship[j+1].Sec, frameTime, 
ship[j].Depth,ship[j+1].Depth)-orePos.Depth; 
fish_xyRge = sqrt((Interp_Ore.Rge*Interp_Ore.Rge) - (fish_z*fish_z)); 
/*printf("Interp_Ore.Rge %.3f %.3f\n", Interp_Ore.Rge, fish_z);*/ 
fxDist =(cos((oreAz+orePos.Hdg)*M_PI/180)*fish_xyRge) / 
(60*LenLatMin(north_old)); 
fyDist =(sin((oreAz+orePos.Hdg)*M_PI/180)*fish_xyRge) / 
(60*LenLonMin(north_old)); 
 
 
   east_old = camPos.East; 
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   north_old= camPos.North; 
   time_old = camPos.Sec; 
   camPos.Sec = frameTime; 
 
/* generate interpolated ship to towcam bearing*/ 
orePos.Hdg=Lin_interp(ship[j].Sec,ship[j+1].Sec, frameTime, ship[j].Hdg,ship[j+1].Hdg); 
 
/*interp ship lat */ 
camPos.North =Lin_interp(ship[0].Sec,ship[c-1].Sec, frameTime, ship[0].North,ship[c-
1].North); 
/* offset to trackpoint transducer */ 
camPos.North = camPos.North + xrotateYPR(ore_xoff, ore_yoff, ore_zoff, ship[j].Hdg, 
0.0, 0.0)/(60*LenLatMin(ship[j].North)); 
/* apply trackpoint avg bearing and depth adjusted range*/ 
camPos.North = camPos.North + ((cos((oreAz+orePos.Hdg)*M_PI/180)*fish_xyRge) / 
(60*LenLatMin(north_old))); 
/*apply tracpoint responder to camera Tow vehicle rotation*/ 
camPos.North = camPos.North + xrotateYPR(-0.20, -0.08, 0.49, ship[j].Hdg+ oreAz + 
180 , camPos.Pitch, camPos.Roll)/(60*LenLatMin(ship[j].North)); 
 
/*interp ship lon */ 
camPos.East =Lin_interp(ship[0].Sec,ship[c-1].Sec, frameTime, ship[0].East,ship[c-
1].East); 
/* offset to trackpoint transducer */ 
camPos.East = camPos.East + yrotateYPR(ore_xoff, ore_yoff, ore_zoff, ship[j].Hdg, 0.0, 
0.0)/(60*LenLonMin(ship[j].North)); 
/* apply trackpoint avg bearing and depth adjusted range*/ 
camPos.East = camPos.East + ((sin((oreAz+orePos.Hdg)*M_PI/180)*fish_xyRge) / 
(60*LenLonMin(north_old))); 
/*apply tracpoint responder to camera Tow vehicle rotation*/ 
camPos.East = camPos.East + yrotateYPR(-0.2, -0.08, 0.49, ship[j].Hdg+ oreAz + 180, 
camPos.Pitch, camPos.Roll)/(60*LenLonMin(ship[j].North)); 
 
camPos.Pitch =Lin_interp(ship[j].Sec,ship[j+1].Sec, frameTime, 
ship[j].Pitch,ship[j+1].Pitch); 
camPos.Roll =Lin_interp(ship[j].Sec,ship[j+1].Sec, frameTime, 
ship[j].Roll,ship[j+1].Roll); 
 
/* get the future altitude of the camera when over image footprint */ 
if(!camPos.Alt) camPos.Alt =2; 
alt_delay = camPos.Alt * tan((camPos.Pitch +25)*M_PI/180) ; 
alt_delay = alt_delay-22.25*0.0254;/* offset lense to altimeter*/ 
alt_delay = alt_delay/shipAvg.Smg; /*convert distance to time */ 
int delay1=floor(alt_delay); 
int delay2=ceil(alt_delay); 
if(ship[j+ delay2].Sec < frameTime + alt_delay){++delay1;++delay2;} 
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camPos.Alt =Lin_interp(ship[j+ delay1].Sec, ship[j+ delay2].Sec, frameTime + alt_delay, 
ship[j+ delay1].Alt,ship[j+ delay2].Alt); 
/*apply vertical offset from altimeter to lense*/ 
camPos.Alt = zrotateYPR(13.5*0.0254, 0.0, camPos.Alt-4.25*0.0254, 0.0, camPos.Pitch, 
camPos.Roll); 
camPos.Depth =Lin_interp(ship[j].Sec,ship[j+1].Sec, frameTime, 
ship[j].Depth,ship[j+1].Depth); 
 
 
yDist= (camPos.North- north_old)*(60*LenLatMin(north_old)) ; /*meters*/ 
xDist= (camPos.East - east_old)*(60*LenLonMin(north_old)) ;/*meters*/ 
camPos.Smg=sqrt(pow(yDist,2)+ pow(xDist,2)); 
camPos.Smg= camPos.Smg/(frameTime-time_old) ; /*m/s */ 
 
camPos.Cmg = atan2(xDist,yDist)*180/M_PI; 
 
 
printf("cam North %.10f East %.10f Pitch %.3f Roll %.3f Alt %.3f Depth %.3f 
\n",camPos.North,camPos.East, camPos.Pitch,camPos.Roll,camPos.Alt,camPos.Depth); 
printf("SMG %.3f m/s CMG %.3f Deg %.3f sec\n", camPos.Smg,camPos.Cmg, 
frameTime); 
printf("shipAvg.Smg %.3f m/s shipAvg.Cmg %.3f deg %d %d\n",shipAvg.Smg, 
shipAvg.Cmg, j,k); 
printf("alt_delay %f, delay1 %d, delay2 %d, %f, %f \n",alt_delay ,delay1,delay2,ship[j+ 
delay1].Sec, ship[j+ delay2].Sec ); 
return(0); 
 }/*eo cam_pos */ 
 
void write_pmw(){printf("got here! j %d, k %d\n", j, k); 
  if(readlist = getline(&linelist, &lenlist, infilelist) !=-1){ 
 pmwname = strsep(&linelist,"."); 
 strcpy (pmwnew, workpath); 
 strcat(pmwname,".pmw"); 
 strcat(pmwnew,pmwname); 
 printf("Opening %s ..\n",pmwnew); 
 pmwfile = fopen(pmwnew,"wb"); 
printf("%d,%d,%.3f,%.9f,%.9f,%.2f,%.2f,%.2f,%.2f,%.2f,%.2f\n", ship[j].Yr,jday, 
frameTime,camPos.North,camPos.East, camPos.Pitch,camPos.Roll,camPos.Alt, 
camPos.Depth, shipAvg.Smg, shipAvg.Cmg); 
 
fclose(pmwfile); 
} 
 
 
return; 
}/*eo write_pmw*/ 
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int calc_sec (int hhmmss) { 
 int Hr, Min; 
 float Sec; 
 Hr = floor(hhmmss/10000); 
 Min = floor((hhmmss-Hr*10000)/100); 
 Sec = hhmmss-Hr*10000-Min*100; 
 Sec = Sec+Min*60+Hr*3600; 
 
return(Sec); 
}/*eo calc_sec*/ 
 
int readVidInf() { 
 float BeginTime, EndTime; 
 
 inname="Vid_Info.txt"; 
 line = NULL; 
 infile = fopen(inname,"rb"); 
 
while  ((read = getline(&line, &len, infile)) != -1) { 
 token = strtok (line,delimiter); 
 token = strtok (NULL,delimiter); 
 BeginTime = calc_sec(atof(token)); 
 
 token = strtok (NULL,delimiter); 
 EndTime = calc_sec(atoi(token)); 
 token = strtok (NULL,delimiter); 
 nav = token; 
 
 token = strtok (NULL,delimiter); 
 
 
 if(BeginTime < vidOffSec && EndTime > vidOffSec) { 
/*printf("Vid Info was matched!! %f %f %f\n", BeginTime, vidOffSec, EndTime);*/ 
  fclose(infile); 
  return(0); 
  } 
 } 
printf("Vid Info Not matched %f %f %f\n", BeginTime, vidOffSec, EndTime); 
exit(-1); 
}/*eo load vid info*/ 
 
 
/*The rotateYPR function performs vector rotations in SIMRAD Space */ 
/* the x axis is positive towards the bow, the Y axis is */ 
/* positive to Starboard and the Z - axis is positive downwards*/ 
/* Yaw is positive clockwise, pitch is positive bow up */ 
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/* roll is postive down to starboard */ 
/* originally coded by J Bradford for GGE6023 FA 2002*/ 
float xrotateYPR(double xi, double yi, double zi, double yaw, double pitch, double 
roll){ /* Yaw Pitch Roll Matrices Times input vector */ 
inname = path; 
 
 double xrot; 
 double PI = M_PI; 
 
 
xrot = xi * cos(PI/180*yaw) * cos(PI/180*pitch) - yi * sin(PI/180*yaw) * cos(PI/180*roll) 
+ yi * cos(PI/180*yaw) * sin(PI/180*pitch) * sin(PI/180*roll) + zi * sin(PI/180*yaw) * 
sin(PI/180*roll) + zi * cos(PI/180*yaw) * sin(PI/180*pitch) * cos(PI/180*roll); 
 return(xrot); 
 } 
 
 
float yrotateYPR(double xi, double yi, double zi, double yaw, double pitch, double roll){ 
 
 double yrot; 
 double PI = M_PI; 
 
yrot = xi*sin(PI/180*yaw)*cos(PI/180*pitch) + yi*cos(PI/180*yaw)*cos(PI/180*roll) + 
yi*sin(PI/180*yaw)*sin(PI/180*pitch)*sin(PI/180*roll) - 
zi*cos(PI/180*yaw)*sin(PI/180*roll) + 
zi*sin(PI/180*yaw)*sin(PI/180*pitch)*cos(PI/180*roll); 
  return(yrot); 
 } 
 
float zrotateYPR(double xi, double yi, double zi, double yaw, double pitch, double roll){ 
 
 double zrot; 
 double PI = M_PI; 
 zrot= (-xi*sin(PI/180*pitch) + yi*cos(PI/180*pitch)*sin(PI/180*roll) +  
zi*cos(PI/180*pitch)*cos(PI/180*roll)); 
  return(zrot); 
 
 } 
/* eo rotateYPR functions */ 
 
 
/*LenLatMin and LenLonMinfunction based on Admiralty Manual of Navigation Vol1 
page 44/45 */ 
/*WGS params from NIMA TR8350.2 dated 4 July 1997 */ 
/*created by J Bradford Feb 2004 */ 
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double LenLatMin(double lat) { /* Length in metres of a minute of Lat */ 
 
double a, f, e, Len, Q, x; 
 
 x = lat*M_PI/180; /* convert to Radians */ 
 a =  6378137.00; /* WGS 84 Semi Major Axis */ 
 f = 1/298.257223563; /* WGS84 Flattening */ 
 e = sqrt((2*f-f*f)); /* eccentricity */ 
 
 Q=(1-e*e*sin(x)*sin(x)); 
 Len = a*(1-e*e)/sqrt(Q*Q*Q)*sin(M_PI/10800);/* length in metres */ 
 
 return(Len); 
 
 } 
 
double LenLonMin(double lat) { /* Length in metres of a minute of Long at a given Lat*/ 
 
double a, f, e, Len, Q, x; 
 
 x = lat*M_PI/180; /* convert to Radians */ 
 a =  6378137.00; /*WGS84 Semi Major Axis */ 
 f = 1/298.257223563; /* WGS84 Flattening */ 
 e = sqrt((2*f-f*f)); /* eccentricity */ 
 
 Q=(1-e*e*sin(x)*sin(x)); 
 Len = a*cos(x)/sqrt(Q)*sin(M_PI/10800);/*length in metres*/ 
 
 return(Len); 
 
 } 
 
double Lin_interp (double x0, double x1, double x2, double y0, double y1) { 
 /*y=mx+b interpolator j bradford 2004*/ 
 double y2, b, m; 
 m = (y1-y0)/(x1-x0); 
 b = y0-m*x0; 
 y2 = m*x2+b; 
/*printf("y2 %f, m %f, x2 %f b %f x0 %f x1 %f y0 %f y1 %f\n", y2, m, x2, b, 
x0,x1,y0,y1);*/ 
return(y2); 
} /*eo Lin_interp */ 
 
int IS_LEAP_YEAR(int year) 
{ 
        if(year%4 != 0) return(0); 
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        else 
        if(year%400 == 0) return(1); 
        else 
        if(year%100 == 0) return(0); 
        else 
        return(1); 
} 
int stdtime_dmy_to_jul_day (short day, short month, short year) 
{ 
        short jday; 
 jday = day; 
        if (IS_LEAP_YEAR(year) && month>2) jday++; 
        while (--month) jday+=stdtime_days_in_month[month-1]; 
        return (jday); 
} 
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A2.4 projNew.c 
/* ---------------------------------------- 
 * projects extracted video frame to 
   a plane, applies radial and radiometric 
 correction 
 * projNew.c Bradford 2004 
 * 09 Mar 04 - encoded cropping of image to output only rows and 
   columns containing data 
 * 26 Mar 04 - added nocrop switch for use in making animated gifs 
 * 14 May 04 - reduced size of proj frame to use only 30 rows 
  (sweet spot) 
* 16 May 04 - added switch to control number of rows in sweet spot 
 *----------------------------------------------- */ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <ctype.h> 
#include <math.h> 
#include <string.h> 
 
 
#define BYTE unsigned char 
 
typedef struct telem{ 
  double Time; 
  double North;/*decimal Degrees*/ 
  double East;/*decimal degrees*/ 
  double Lat; 
  double Lon; 
  float Hdg; 
  float Smg; 
  float Cmg; 
  int Yr; 
  int Mo; 
  int Day; 
  double Sec; 
  float Pitch; 
  float Roll; 
  float Alt; 
  float Depth; 
  float OreAz; 
  float OreRge; 
  } telem; 
telem Cam; 
 
int COL, ROW, outRow, outCol, height, width, topClip=219, botClip=269; 
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float pixAng, dFOV, rayElev, rayRoll, camPitch, camRoll, camYaw, mountPitch, lensAlt, 
rayRange; 
float uDist, vDist, pixRes, k1, k2, f; 
float imRotX(double xi,double yi, double zi, double yaw, double pitch, double roll); 
float imRotY(double xi,double yi, double zi, double yaw, double pitch, double roll); 
long i, j; 
char *line; 
const char delimiter[] =",";/* for use in strtok */ 
void fill_point( int x, int y, int color, unsigned char weight); 
 
 BYTE *outim, *out2im;; 
 
 
FILE *infile, *outfile, *out2file, *pmwfile, *erroutfile; 
int wts_flag=0; 
int man_flag=0; 
int no_crop=0; 
int option_select; 
 
main (int argc, char ** argv) { 
 
 char *inname=0l,  *outname=0l, *out2name=0l; 
 
 BYTE *inim; 
 int *outXcoord, *outYcoord; 
 BYTE *weights; 
 
 while (*(++argv)) { 
if (!strcmp (*argv,"-in")) { 
 
  if (!*(++argv)) { 
 
   printf ("-in requires input binary filename "); 
   err_exit(); 
  } 
  inname = *argv; 
 
 } else if (!strcmp (*argv,"-out")) { 
  if (!*(++argv)) { 
 
   printf ("-out requires output file name "); 
   err_exit(); 
  } 
 
  outname = *argv ; 
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 } else if (!strcmp (*argv,"-wts")) { 
  if (!*(++argv)) { 
 
   printf ("-wts requires output file name "); 
   err_exit(); 
  } 
 
  wts_flag++; 
  out2name = *argv ; 
 } else if (!strcmp (*argv,"-manual")) { 
 
 
  man_flag++; 
   ; 
 } else if (!strcmp (*argv,"-no_crop")) { 
 
 
  no_crop++; 
   ; 
 } else if (!strcmp (*argv,"-top")) { 
 
  ++argv; 
  topClip= atoi(*argv); 
   ; 
 }  else if (!strcmp (*argv,"-bot")) { 
 
  ++argv; 
  botClip= atoi(*argv); 
 
   ; 
 } else { 
  printf(" garbage on command line %s\n", *argv); 
  exit(0); 
 
 } 
   } 
 
 if (!inname || !outname) err_exit(); 
 else 
 printf("\n %s   --> -->  %s\n  ", inname, outname ); 
/*---------------------------------------------------------------*/ 
 
 infile = fopen (inname,"rb"); 
 if (!infile) { 
  printf (" Could not open %s for reading, bummer \n", inname); 
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  err_exit(); 
 } 
 
 outfile = fopen (outname,"wb"); 
 if (!outfile) { 
  printf (" Could not open %s for writing, bummer \n", outname); 
  err_exit(); 
 } 
 if(wts_flag) { 
 out2file = fopen (out2name,"wb"); 
 if (!out2file) { 
  printf (" Could not open %s for writing, bummer \n", out2name); 
  err_exit(); 
 } 
 } 
 
 erroutfile = fopen ("error_dump","wb"); 
 if (!erroutfile) { 
  printf (" Could not open error_dump for writing, bummer \n"); 
  err_exit(); 
 } 
 
/*---------------------------------------------------------------*/ 
 
 
GetPGMrc(); 
read_pmw(inname); 
 
if (topClip>ROW/2-1||topClip<0) topClip=0;/*test for valid image row clip values ->*/ 
if (botClip<ROW/2||botClip>480) botClip=480;/*-> if not valid set to max*/ 
printf("topClip %d, botClip %d\n", topClip, botClip); 
dFOV = 96.24*M_PI/180; 
pixAng=dFOV/sqrt(ROW*ROW+COL*COL); 
k1=-2.8e-6;/* radial distortion constant estimated value from rough calibration*/ 
k2=0.0;/* estimated value from rough calibration*/ 
set_params(); 
 
if(man_flag>0) { getManualAtt();} 
 
inim = (BYTE *) malloc(COL * ROW * sizeof(BYTE)); 
weights = (BYTE *) malloc(COL * ROW * sizeof(BYTE)); 
memset(weights, COL*ROW,255); 
outXcoord = (int *) malloc(COL * ROW * sizeof(int)); 
outYcoord = (int *) malloc(COL * ROW * sizeof(int)); 
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unsigned char imageByte; 
long byteCount = 0; 
height = 1500+(botClip-topClip)*5; 
width =2000+(botClip-topClip)*5; 
printf("pixAng= %f\t pixRes=%f\t ht Val = %d\n", pixAng,pixRes, height); 
double value; 
outim = (BYTE *) malloc(height * width * sizeof(BYTE)); 
memset(outim, 255, height*width); 
 
if(wts_flag) { 
out2im = (BYTE *) malloc(height * width * sizeof(BYTE)); 
memset(out2im, 255, height*width); 
} 
 
 
 
fseek(infile,-(ROW * COL),SEEK_END); 
 
/* read in the whole input image */ 
 fread (inim,ROW*COL,1,infile); 
for (j=topClip;j<botClip; j++) { for (i=0; i < COL; i++) { 
 if(*(inim+(j*COL)+i) ==255) *(inim+(j*COL)+i) = 254; /* restrict values 
output*/ 
}} 
/* ***BEGIN radial,project,radiometric corrections */ 
for (j=topClip;j<botClip; j++) { for (i=0; i < COL; i++) { 
 
 
 rayElev = (((ROW/2-j)*pixAng)+camPitch+mountPitch)*180/M_PI; 
 rayRoll = ((((COL/-2)+i)*pixAng)+camRoll)*180/M_PI; 
 
 float r, dr;/*radial distortion variables*/ 
 
 
 
 if(rayElev < 80 && rayRoll < 80 && rayRoll > -80 && rayElev > -80) { 
 
 uDist=((ROW/2)+6-j);/*de-centering pixel shift +6 rows -2 cols 
    from cam calib*/ 
 vDist=((COL/-2)-2+i); 
 r = sqrt(uDist*uDist + vDist*vDist);/*Correcting for Radial Distortion*/ 
 dr = k1*r*r + k2*r*r*r*r; 
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 uDist= uDist*(1-dr)*pixRes*1.07/2;/* undistort and scale */ 
 vDist = vDist*(1-dr)*pixRes/2;/* watch for problems with scaling values*/ 
 
 double x; 
 double y; 
  /*** rotation and reproject after Derenyi 1996 eqn.(4-7)*/ 
 x = -lensAlt*imRotX(uDist, vDist, -f, 0.0, - (camPitch + mountPitch), camRoll); 
 y = -lensAlt*imRotY(uDist, vDist, -f, 0.0, - (camPitch + mountPitch), camRoll); 
 
 
 outRow = floor(x/pixRes); /*output result by row and col */ 
 outCol =floor(y/pixRes); 
 
          *(outXcoord+j*COL+i) = outCol; 
    *(outYcoord+j*COL+i) = outRow; 
 
 
   if(wts_flag) { 
 
    if (j < ROW/2) /*weight by row from middle to top*/ 
   *(weights+j*COL+i) = 255* ((ROW/2)-j)/(ROW/2); 
    else /*weight by row from middle to bottom*/ 
   *(weights+j*COL+i) = 255* (j-(ROW/2))/(ROW/2)*.5; 
 
 
   }/* eo if wts_flg*/ 
 
 value =*(inim+j*COL+i); 
 value = 0.9*value + r/30; 
 r = sqrt(lensAlt*lensAlt/pixRes+r*r); 
 r=r/90; 
 value = value + pow(r,3) ; 
 *(inim+j*COL+i) = value; 
 if (value > 255) value = 255; 
 if (value < 0) value = 0; 
 
        *(outim + (height-1000-outRow)*width+outCol+width/2) = *(inim+j*COL+i); 
 
 } else { 
          *(outXcoord+j*COL+i) = -999.0; 
    *(outYcoord+j*COL+i) = -999.0; 
   if(wts_flag) *(weights+j*COL+i) = 0; 
 } 
 
 ++byteCount; 
 } 
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} /* eo radial,project,radiometri */ 
 
/* now go back through and paint in between pixel quads */ 
 
for (j=topClip;j<botClip-1; j++) { for (i=0; i < COL-1; i++) { 
 
 fill_quad2 ( 
   *(outXcoord+j*COL+i), *(outYcoord+j*COL+i), 
      (int)(*(inim+j*COL+i)), 
   *(outXcoord+(j+1)*COL+i), *(outYcoord+(j+1)*COL+i), 
      (int)(*(inim+(j+1)*COL+i)), 
   *(outXcoord+(j+1)*COL+(i+1)), *(outYcoord+(j+1)*COL+(i+1)), 
      (int)(*(inim+(j+1)*COL+(i+1))), 
   *(outXcoord+j*COL+(i+1)), *(outYcoord+j*COL+(i+1)), 
      (int)(*(inim+j*COL+(i+1))), 
    (int)(*(weights+j*COL+i))    ); 
 
 
 } 
} 
 
 
 
int maxCol, minCol, topRow, botRow; 
unsigned char pixval; 
/* locate row and col limits of image for use in cropping the output */ 
 for(j=0;j<height;j++){for(i=0;i<width;i++) { pixval=  *(outim+j*width+i); 
    if (pixval!=255){ printf("%d \t", pixval); 
    topRow=j; j=height; i=width; 
     } 
    } 
   } 
 
 for(j=height-1;j>topRow;j--){for(i=0;i<width;i++) { pixval=*(outim+j*width+i); 
    if (pixval!=255){ printf("%d \t", pixval); 
    botRow=j; j=topRow; i=width; 
     } 
    } 
   } 
 for(i=0;i<width;i++){for(j=0;j<height;j++){ pixval= *(outim+j*width+i); 
    if (pixval!=255){ printf("%d \t", pixval); 
    minCol=i;j=height; i=width; 
     } 
    } 
   } 
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 for(i=width-1;i>minCol;i--){for(j=0;j<height;j++) { pixval= *(outim+j*width+i); 
    if (pixval!=255){ printf("%d \t", pixval); 
    maxCol=i; j=height; i=minCol; 
     } 
    } 
   } 
 
 
printf("Top %d Left %d Bot %d Right %d\n", topRow, minCol, botRow, maxCol); 
 
if(no_crop){topRow=0;minCol=0;botRow=height;maxCol=width;} /* reset the crop 
bounds to max extent */ 
 
 
 fprintf(outfile,"P5\n#PGM reprojection utility\n#%f %f 
%f\n#$PMW,%d,%d,%.3f,%.9f,%.9f,%.3f,%.3f,%.3f,%.3f,%.3f,%.3f\n%d %d 255\n", 
pixRes, (minCol+width/-2)*pixRes, (height-topRow-1000)*pixRes,  Cam.Yr, Cam.Day, 
Cam.Time, Cam.North, Cam.East, Cam.Pitch, Cam.Roll, Cam.Alt, Cam.Depth,Cam.Smg, 
Cam.Cmg,(maxCol-minCol), (botRow-topRow)); 
 for (j=topRow;j<botRow;j++){ 
 fwrite (outim+j*width+minCol,(maxCol-minCol),1,outfile);} /* write to the pgm 
file */ 
 export_track(Cam.Yr,Cam.Day,Cam.Time,Cam.North,Cam.East); 
 if(wts_flag) { 
 fprintf(out2file,"P5\n#PGM reprojection utility\n#%f %f 
%f\n#$PMW,%d,%d,%.3f,%.9f,%.9f,%.3f,%.3f,%.3f,%.3f,%.3f,%.3f\n%d %d 255\n", 
pixRes,(minCol+width/-2)*pixRes, (height-topRow-1000)*pixRes,  Cam.Yr, Cam.Day, 
Cam.Time, Cam.North, Cam.East, Cam.Pitch, Cam.Roll, Cam.Alt, Cam.Depth,Cam.Smg, 
Cam.Cmg,(maxCol-minCol), (botRow-topRow)); 
 for (j=topRow;j<botRow;j++){ 
 fwrite (out2im+j*width+minCol,(maxCol-minCol),1,out2file);}/* write to the 
pgm file */ 
 } 
 
 /* Tidy up and Exit */ 
 
 
free(inim); 
free(outXcoord); 
free(outYcoord); 
free(outim); 
free(weights); 
if(wts_flag) free(out2im); 
fclose(infile); 
fclose(outfile); 
if(wts_flag) fclose(out2file); 

113 



printf ("\t%d\tImage Bytes Projected\n\n Done!!\n", byteCount); 
 
exit(0); 
 
 
 } 
 
/* ------------- eo main program -------------*/ 
 
int GetPGMrc () { 
 
 int  OAcount = 0; 
 BYTE inbyte; 
 BYTE r[6]; 
 BYTE c[6]; 
  i=0; 
  j=0; 
 ROW=0; 
 COL=0; 
 
 while(!feof(infile)) { 
 
 fread (&inbyte,1,1,infile); 
 
  if (inbyte==0x0A) {OAcount ++;} 
 
  if (OAcount == 2 && COL == 0 ) { c[i] = inbyte; i++; 
 
      } 
  if (OAcount == 2 && inbyte == 0x20) COL= atoi(c); 
     
  if (COL > 0 && inbyte > 0x29 )  {r[j] = inbyte; j++;} 
 
  if (COL > 0 && inbyte == 0x20 ) ROW = atoi(r); 
 
  if (OAcount == 3) { break;} 
 
 } 
 
 printf("Rows= %d \tCols= %d \n", ROW, COL); 
 
 return(0); 
} /* eo GetPGMrc */ 
 
int ExportFrames () { 
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 return(0); 
} /* eo ExportFrames */ 
 
int err_exit() 
{ 
        fprintf(stderr, "Oooopps I need switches Usage: %s\n", "Description"); 
 fprintf(stderr, "-in input binary filename \n"); 
        fprintf(stderr, "-out outfilename \n"); 
        exit (-1); 
} 
/* ------------------------------------------- */ 
/* ------------------------------------------- */ 
void fill_point(int x, int y, int color, unsigned char weight) { 
int theX, theY; 
  /* to avoid overflowing map sheet */ 
 theX = x+width/2; 
 theY = height-1000-y; 
 
 if(theX>0 && theX < width && 
    theY>=0 && theY < height) { 
  *(outim + theY*width+theX)=color; 
 
 if(wts_flag) 
  *(out2im + theY*width+theX)=weight; 
 } 
} 
 
/* ----------------------------------- */ 
 
/*   Open, Parse and Close a  comma delimited text file */ 
int read_pmw(char *inname) { 
 
 char  *token, *innamepmw; 
 line = NULL; 
 size_t len = 0; 
 ssize_t read; 
 
 innamepmw = strsep(&inname,"p"); 
 strcat (innamepmw,"pmw"); 
 printf("%s\n", innamepmw); 
 
 pmwfile = fopen(innamepmw, "rb"); 
if (!pmwfile) { 
  printf (" Could not open %s for reading, selecting manual input 
\n",innamepmw); 
  man_flag++; 
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  return(0); 
  } 
 
 (read = getline(&line, &len, pmwfile)); 
 token = strtok(line,delimiter);/*Year*/ 
 Cam.Yr = atoi(token); 
 token = strtok (NULL,delimiter);/*Year*/ 
 Cam.Day = atoi(token); 
 token = strtok (NULL,delimiter);/* time sec*/ 
 Cam.Time = atof(token); 
 token = strtok (NULL,delimiter); /* northing */ 
 Cam.North = atof(token); 
 token = strtok (NULL,delimiter); /*easting*/ 
 Cam.East = atof(token); 
 token = strtok (NULL,delimiter); /*pitch*/ 
 Cam.Pitch= atof(token); 
 token = strtok (NULL,delimiter); /*roll*/ 
 Cam.Roll = atof(token); 
 token = strtok (NULL,delimiter); /*Alt*/ 
 Cam.Alt = atof(token); 
 token = strtok (NULL,delimiter); /*depth*/ 
 Cam.Depth = atof(token); 
 token = strtok (NULL,delimiter); /* ore az */ 
 Cam.Smg = atof(token); 
 token = strtok (NULL,delimiter); /* ore range*/ 
 Cam.Cmg = atof(token); 
printf("$PMW,%d,%d,%.3f,%.9f,%.9f,%.3f,%.3f,%.3f,%.3f,%.3f,%.3f 
\n",Cam.Yr,Cam.Day,Cam.Time, Cam.North, Cam.East,Cam.Pitch,Cam.Roll,Cam.Alt, 
Cam.Depth, Cam.Smg, Cam.Cmg); 
 
 fclose(pmwfile); 
 
 
return(0); 
} 
int export_track(int yr, int jday, double time, double north, double east){ 
FILE *expfile; /* creates a txt file for import to ArcView*/ 
expfile = fopen("MOS_Working/sitesout.txt","ab"); 
fprintf(expfile,"%.9f,%.9f,%d,%d,%.3f\n",north,east,yr,jday,time); 
fclose(expfile); 
return(0); 
} 
int getManualAtt(){ 
printf("Select Toggle Num to Adjust Navigation &/or Attitude Parameters\n(1)North= 
%.9f\t(2)East=%.9f\t(3)Alt=%.3f\t\n(4)Pitch=%.2f\t\t(5)Roll=%.2f\t(6)Yaw=%.2f\t(7)En
ter Rows and Cols \n(8) to adjust camera Diagonal FOV (%.2f)\n(0) When Done to 
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Project Frame!\nPix Res is Set To: %.3f mm\tRows= %d Cols= 
%d\n\n",Cam.North,Cam.East,Cam.Alt,Cam.Pitch+mountPitch*180/M_PI,Cam.Roll,Ca
m.Cmg,dFOV*180/M_PI,pixRes*1000, ROW, COL); 
 
 
 
 printf("Make Selection (0-7):  \n"); 
  scanf("%d \n", &option_select); 
 
 switch(option_select){ 
 case 0 : set_params();return(0); 
 break; 
 case 1 : printf("Enter New Northing Value:  \n"); 
  scanf("%f", &Cam.North); 
  set_params(); 
 break; 
 case 2 : printf("Enter New Easting Value:  \n"); 
  scanf("%f", &Cam.East); 
  set_params(); 
 break; 
 case 3 : printf("Enter New Altitude Value:  \n"); 
 scanf("%f", &Cam.Alt); 
 set_params(); 
 break; 
 case 4 : printf("Enter New Pitch Value:  \n"); 
 scanf("%f", &Cam.Pitch); 
 set_params(); 
 break; 
 case 5 : printf("Enter New Roll Value:  \n"); 
  scanf("%f", &Cam.Roll); 
  set_params(); 
 break; 
 case 6 : printf("Enter New Yaw Value:  \n"); 
 scanf("%f", &Cam.Cmg); 
 set_params(); 
 break; 
 case 7 : printf("Enter New Row Value: \n"); 
   scanf("%d", &ROW); 
  printf("Enter New Col Value: \n"); 
  scanf("%d", &COL); 
  set_params(); 
 break; 
 case 8 :printf("Enter Diagonal FOV Value: \n"); 
   scanf("%f", &dFOV); 
  dFOV = dFOV*M_PI/180; 
  set_params(); 

117 



 break; 
 }/*eo switch*/ 
 
getManualAtt(); 
} 
 
int set_params() { 
 
pixAng=dFOV/sqrt(ROW*ROW+COL*COL); 
mountPitch = 25*M_PI/180; /*measured mount angle for camera on towbody*/ 
camPitch = Cam.Pitch*M_PI/180; 
camRoll = Cam.Roll*M_PI/180; 
camYaw = Cam.Cmg*M_PI/180; 
lensAlt = (Cam.Alt)*cos(camPitch); 
pixRes=0.005;/*arbitrary resolution value*/ 
/*pixRes= 2*lensAlt*tan(pixAng/2);/* ifov x (secant squared view angle)*/ 
 f = (sqrt(ROW/2*ROW/2+COL/2*COL/2))/tan(dFOV/2)*pixRes; /* calculate 
focal length in pixel and convert to length*/ 
 printf("f = %f\n", f); 
return(0); 
} 
 
 
float imRotX(double xi,double yi, double zi, double yaw, double pitch, double roll) { 
 /* after Derenyi 1996 eqn (2-20) and (4-7)*/ 
 double xrot; 
 
 xrot= xi * cos(yaw) * cos(pitch) - yi*sin(yaw)*cos(pitch) + zi*sin(pitch) ; 
 
 xrot = xrot / (xi* (sin(yaw) * sin(roll) - cos(yaw) * sin(pitch) * cos(roll)) + 
yi*( cos(yaw)*sin(roll) + sin(yaw)*sin(pitch)*cos(roll)) +  zi*cos(pitch)*cos(roll)); 
 
 return(xrot); 
 } 
 
float imRotY(double xi,double yi, double zi, double yaw, double pitch, double roll) { 
 /* after Derenyi 1996 eqn (2-20) and (4-7)*/ 
 double yrot; 
 
 yrot = xi * (sin(yaw) * cos(roll) + cos(yaw) * sin(pitch) * sin(roll)) + 
yi*(cos(yaw)*cos(roll) - sin(yaw)*sin(pitch)*sin(roll)) - zi*cos(pitch)*sin(roll); 
 yrot = yrot/(xi* (sin(yaw) * sin(roll) - cos(yaw) * sin(pitch) * cos(roll)) + 
yi*( cos(yaw)*sin(roll) + sin(yaw)*sin(pitch)*cos(roll)) +  zi*cos(pitch)*cos(roll)); 
 return(yrot); 
 } 
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A2.5 Merge_Data 
 
# shell script to  
#strip and reformat pertinent nav and telemetry data from ".03e and .03T" files 
#script is called by mosProc.c 
#j bradford 29 Mar 04 
#an OFS with a trailing space ", " is used because later  
#processing employs the function strtok 
#which does not behave well with NULL fields 
rm -f *.txt *.tmp *.flt 
echo .txt .tmp and .flt files removed ... writing NMEA_Data.tmp 
gawk -F, 'BEGIN {OFS=", "} /GPZDA/{gpYr=$5; gpDay=$3; gpMon=$4} /GPVTG/ 
{gpCmg=$2; gpSmgKm=$8}  /HDT/ {if ($2!="")shipHdg=$2}  /GPGGA/ {gpTime=$2; 
gpLat=$3; gpLon=$5; hr=int($2/10000);min=int(($2-int($2/10000)*10000)/100); 
sec=$2-int($2/100)*100;  print 
gpTime,gpLat,gpLon,shipHdg,gpSmgKm,gpCmg,gpYr,gpMon,gpDay,hr*3600+min*60
+sec}' NMEA_Data.03e > NMEA_Data.tmp 
tail -n 5 NMEA_Data.tmp 
echo writing ORE_Data.tmp 
gawk -F, '/GPGGA/ {OFS=", "; gpTime=$2} /POREB/ {oreAz=$5; oreRge=$6; 
oreDx=$7; oreDy=$8; oreDz=$9; oreErr=$11; oreRoll=$12; orePit=$13; print 
gpTime,oreAz,oreRge,oreDx,oreDy,oreDz,oreErr,oreRoll,orePit}' NMEA_Data.03e > 
ORE_Data.tmp 
tail -n 5 ORE_Data.tmp 
echo extract Towcam data and comma delimit it placing gps time in first field 
gawk '{FS=", "; OFS=", ";if (NR>2 && timeOld <$7) print $7,$3,$4,$5,$6;timeOld=$7}' 
Towcam_Data.03T > Towcam_Data.tmp 
echo combine ship and towcam 1Hz data 
join -t , NMEA_Data.tmp Towcam_Data.tmp > Merge_Data.tmp 
tail -n 5 Merge_Data.tmp 
echo convert ddmm.mm Lat and Lon to dd.ddddd and join to 1Hz data 
gawk -F, '{printf("%.6d, %.10f, %.10f\n"), $1,  (int($2/100)+($2-
(int($2/100)*100))/60),(int($3/100)+($3-(int($3/100)*100))/60)*-1 }' Merge_Data.tmp > 
lola.tmp 
join -t , lola.tmp Merge_Data.tmp > mosTrack.txt 
echo run median filter on Trackpoint Az 
#filtNav is a five point median filter run on Trackpoint Az 
../filtNav 
tail -n 5 *.flt 
 
A2.6 to_jhc 
 
#script to generate mosaic images from re-projected pgm files 
#j bradford Mar 2004 
 PCItoJHC -pgm -in $1.pgm -out $1.rot -bradford -towcam_azi $2 
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 cp closeup.blank $1.mos 
 patchArea -interp -prime -back 255 -out $1.mos -ignore 255 -import $1.rot.band1 
 
A2.7 Corners.sh: 
 
#corners.sh  
#shell script to identify the max and min Lat Lon of selected reprojected pgm files 
#it calculates and prints the Upper Left and Lower Right corners 
#of a bounding box 5 meters outside the max and mins 
# these coords may be cut and pasted into the OMG "make_blank" utility 
#j bradford Mar 2004 
 
rm -f *000000* 
# pass first 4 lines of each pgm file through gawk to identify max/min lats then add/sub 
# 5 meters writing out the result to screen in decimal degrees 
head -n4 0*.pgm | gawk 'BEGIN {FS=","; PI=3.14159265359;  OFS=",";maxN=-
90;minN=90;minE=180;maxE = -180} /PMW/ { if (maxN < $5) maxN=$5; if (minN > 
$5) minN=$5; if (minE > $6) minE=$6; if (maxE < $6) maxE=$6; course=$12} END 
{printf("UL Corner= %.10f %.10f\nLR Corner= %.10f %.10f\n", maxN+5.0/1852/60, 
minE-5.0/(1852*cos(maxN*PI/180))/60, minN-5.0/1852/60, 
maxE+5.0/(1852*cos(maxN*PI/180))/60)}' 
 
rm -f pmw.txt 
 
# pass first 4 lines of each pgm file through gawk and  
#output Frame Number with PMW data 
# in comma delimited format for use as a camera track file for input to ARCGIS 
head -n4 0*.pgm | gawk 'BEGIN {FS=","; PI=3.14159265359;  OFS=",";maxN=-
90;minN=90;minE=180;maxE =-180; 
print("Frame,Yr,Day,Sec,Lat,Lon,Pitch,Roll,Alt,Depth,SMG,CMG");i=1} /PMW/ { if 
(maxN < $5) maxN=$5; if (minN > $5) minN=$5; if (minE > $6) minE=$6; if (maxE < 
$6) maxE=$6; course=$12; 
printf("%.6d,%d,%d,%.3f,%.10f,%.10f,%.3f,%.3f,%.3f,%.3f,%.3f,%.3f\n",i,$2, $3, $4, 
$5, $6, $7, $8, $9, $10, $11, $12) ;i++}' > pmw.txt 
echo pmw.txt written 
 
# call make_blank tool for generation of mosaic header 
make_blank closeup 
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Appendix 3 Sample Telemetry, Navigation and Mosaic Data 
 
A3.1 Long-term Telemetry from TOWCAM 
 
 Altitude and depth in meters, along with pitch and roll data are recorded from the 

TOWCAM vehicle at 1 Hertz. Figure A3-1 displays this data for an extended period 

taken along one survey line. The vehicle pitch varies widely between -15 and 28 degrees. 

There appears to be a long term signal of about 90 seconds evident in the pitch data and 

to a lesser extent in the roll and altitude data. The origin of this signal is unknown but 

may represent a response from the winch feedback control system. There is a shorter term 

signal also evident which is described in paragraph A3.2. The pitch data has a positive 

(nose up) bias while the roll data has a negative (down to starboard) bias. 
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Figure A3-1 Long-term Telemetry Data from TOWCAM 003701-004959,  pitch and roll in degrees,  
altitude and depth in meters. 
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A3.2 Video Mosaic Composite 
 
 This section presents a composite of four mosaic segments covering the epoch 

from 003930-004058. Graphical presentation of the navigational data from GPS and the 

Acoustic Positioning system for the timeframe are shown in figure A3-2. Each mosaic in 

the composite is also presented in the following sub-sections along with the attitude and 

altitude data from the corresponding period. A 6-8 second signal is evident in the data 

and is believed to correspond to vessel motion generated by ocean swell. Scattered 

boulders are clearly evident across the image with a heavy concentrations of boulders 

towards the eastern end of the mosaic. The shape of current / wave generated bedforms in 

the surface sediment can also be seen. By comparing the mosaic image with the graphical 

data the cumulative effect of camera altitude and attitude can be seen. The dark banding 

along the upper quarter of the mosaic is related to light attenuation in the water column 

due to range, as the vehicle is rolled down to starboard the video swath covers a further 

distance to port. 

 

 

 
Figure A3-2 Composite Mosaic from TOWCAM Video. The dark and light banding along the image 

are due to un-modeled range related radiometric attenuation. 
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Figure A3-3 Navigation and Acoustic Positioning Data for composite mosaic time period. The top 

panels show Speed Made Good (SMG) in meters per second and Course Made Good in degrees true 
calculated between sequential GPS fixes. The bottom panels show Acoustic Tracking Data with a 

median filter superimposed, azimuth is in degrees while range is in meters.  
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A3.2.1 Video Mosaic from Epoch 003930-003955 
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Figure A3-4 Mosaic from Epoch 3930-3955 with Attitude and Altitude Data 

124 



A3.2.2 Video Mosaic from Epoch 003950-004015 
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Figure A3-5 Mosaic from Epoch 3950-4015 with Attitude and Altitude Data 
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A3.2.3 Video Mosaic from Epoch 004010-004035 
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Figure A3-6 Mosaic from Epoch 4010-4035 with Attitude and Altitude Data 
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A3.2.4 Video Mosaic from Epoch 004033-004058 
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Figure A3-5 Mosaic from Epoch 4033-4058 with Attitude and Altitude Data 
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