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Abstract

Ocean data constitutes one of the largest geospatial datasets. Due to developments

in the field of multibeam sonar, the amount of data gathered from hydrographic

surveys is growing, causing the data to fall into the category of massive spatial data.

Dataframe is a popular data model used to represent the data and is widely used in

data science applications. Due to the lack of a suitable dataframe that can load large

volumes of multibeam sonar data and support advanced analytics libraries, in this

thesis, a new multi-indexed dataframe, OceanMappingDataframe, is introduced that

can be used to load, store, and analyze multibeam sonar data. The multi-indexed

dataframe was implemented using the MODIN dataframe library. The multi-indexed

dataframe can load the hydrography files in Generic Sensor Format (GSF) or CSV

file format, and save the results in partitioned Parquet files. The multi-indexed

dataframe can also support advanced AI libraries such as OpenAI. This has been

demonstrated by applying the Reinforcement Learning (RL) algorithm to an outlier

detection problem in hydrography.
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Chapter 1

Introduction

Hydrography is the field of mapping the oceans to understand and describe seabed

features [17]. Some of the main applications of seabed mapping are nautical hydrog-

raphy, offshore engineering, fisheries habitat monitoring and environmental moni-

toring. With advancements in the seabed mapping domain, such as developments

of newer survey methods, sensors and software, the amount of data collected from

hydrography surveys is increasing rapidly [18].

There are several processes involved in seabed mapping operations. The primary

process is to carry out the surveying operation with the use of a sensor such as

sonar or LiDAR along with other GNSS sensors. After acquiring the data using

sensors, the data is georeferenced with the water levels of the ocean and the position

of the survey vehicle. The georeferenced data is later passed through the process of

identifying noise and for quality checks before the final product is generated.
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As the entire seabed mapping operation requires multiple processes, sensors, and

software, it is both time-consuming and expensive. In recent years there has been

an effort to reduce the time and expenses involved in the operation by developing

autonomous vehicles to survey the oceans, streamlining the processing software to

process larger amounts of data, and developing new filters to automate the iden-

tification of outliers [40]. With the introduction of newer standards like IHO S-44

[13], the final quality of the data is standardized, making it easier to understand the

ocean compared to before these automation techniques were deployed.

A widely used data structure for representing and analyzing data is dataframes. The

dataframes provided in the Python Pandas library [42] and R [46] are the most pop-

ular dataframes used by the data science community to build machine learning, deep

learning and AI models. As there is a large quantity of quality hydrographic survey

data available now, there is a need to analyze the data using the latest scalable data

analytics techniques and store the large datasets in lighter formats.

Since the hydrography community lacks scalable dataframes that can support multi-

beam sonar data formats and modern data science libraries, this thesis proposes an

OceanMappingDataframe for loading, storing, and analyzing large volumes of multi-

beam sonar data. The proposed dataframe uses concepts of multi-indexing for the

users to conveniently locate the required part of the data from a large data repository,

store the large data in partitions and work along with data science libraries.
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1.1 Problem statement

In the field of hydrography, the data collected from multibeam sonar is increasing

rapidly [40]. As a result, hydrographic offices worldwide receive large volumes of

multibeam sonar data. Therefore, it has created a need in the hydrography com-

munity to consider storage options for large data. Also, as multiple processes are

involved between the collection and production of the hydrographic products, it re-

quires a unique system for the users to conveniently load multibeam sonar files,

perform transformations, and run analytical queries on large multibeam data.

In addition to the requirements mentioned above, the hydrography community usu-

ally spends much time manually identifying outliers in the acquired data. As large

volumes of data are being acquired, outlier identification becomes a bottleneck in the

workflow. Therefore the hydrography community is exploring how to incorporate AI

algorithms in the workflow to automatically identify the outliers in the data.

Many approaches have been proposed to load large volumes of Earth Science data

using array-based structures, such as Xarray, Kluster [53], and to load and represent

multibeam sonar data using Xarray. However, the data science community largely

relies on structures of dataframes, rather than array-based structures to develop

machine learning, deep learning and AI models.

3



There is no tight integration between array-based structures, such as Xarray, and

popular data science and machine learning libraries like scikit-learn [44]. As dataframes

such as Pandas [42] are popular among the data science community and have tight

integration with all the popular data science and machine learning libraries, they can-

not load and transform large volumes of multi-dimensional geospatial data, and in

particular, they do not have the required loaders to read multibeam sonar formats.

Therefore there is a need in the hydrography community to develop a dataframe

structure that can support multibeam sonar readers to read the native multibeam

sonar files, broadcast the multi-dimensional data and have integrations with data

science libraries.

In this thesis, the following are the objectives:

1. Develop a scalable dataframe structure that is well integrated with multibeam

sonar readers to load large volumes of multibeam sonar data.

2. Maintain multi-dimensional data in a multi-indexed structure.

3. Demonstrate integration with data science and AI libraries.

1.2 Contribution

This thesis proposes OceanMappingDataframe, a MODIN-based [45] multi-indexed

dataframe, to support transformations and operations on large amounts of hydrog-

raphy data. The proposed dataframe is one of the first approaches to use a MODIN

based dataframe structure to load and analyze hydrography data. Along with

the proposed OceanMappingDataframe, this thesis demonstrates that the proposed

dataframe can be used with advanced AI libraries by developing a Reinforcement

Learning algorithm to identify outliers in hydrography data.
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1.3 Organization of the thesis

The rest of the thesis is organized as follows. First, the background is introduced

in Chapter 2. Later, the related work is discussed in Chapter 3 and the problem

statement is defined in Chapter 4. Next, the proposed approach is described in

Chapter 5 and the experiment and evaluation of the proposed approach is explained

in Chapter 6. Finally, in Chapter 7, the conclusion and future works are discussed.
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Chapter 2

Background

2.1 Overview

This chapter discusses the fundamental concepts related to the current research work.

It discusses in detail the background information regarding multibeam sonar, multi-

beam sonar data, and multi-index dataframes. Also, the principles of Reinforcement

Learning and the workflow of Reinforcement Learning is discussed.

2.2 Multibeam Sonar

The predominant way to find the depth of the ocean is to use Sound Navigation

and Ranging (SONAR) [35]. The process involves the sonar sending acoustic signals

to the seabed, and the sonar calculating the time taken to receive the echo of the

acoustic signals. The time taken between sending and receiving the acoustic signal

can determine the depth of the water. Different types of sonar devices are used

for different applications, but the predominant sonar used for seabed mapping is

multibeam sonar (MBES). This thesis involves data observed using multibeam sonar.
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The fundamental concept behind multibeam sonar is that a single transmission of

the acoustic signal is transmitted across the seabed. The sonar listens for various

angles of sound coming from a single transmission. The variety of sound coming

from different angles form the beams of the sound.

A unique range can be measured for each beam. Since each beam has a known direc-

tion and range, a depth is calculated for each beam [35]. Figure 2.1 gives a sample

representation of the multibeam sonar process.

Figure 2.1: Sample Representation of Multibeam Sonar Process [35]

The raw depth data received from the sonar is later georeferenced to plot the re-

ceived depths to a geographical position using the GNSS and motion sensor. The

georeferenced data is later applied with sound velocity corrections and passed to

identify errors in the data. As the sound returns from various directions, not all

7



the soundings return after hitting the seabed; some could return without hitting

the seabed due to hitting a bubble, fish, seagrass or other environmental reasons

causing errors in the data. Therefore, during the outlier detection process, the data

operator needs to differentiate the soundings returned from the seabed and the error

soundings. After cleaning, the data is passed to the quality check process, where the

operators check if each area has a sufficient amount of valid sounding based on The

International Hydrographic Organization to be later published for the final product.

Figure 2.2 gives a sample representation of the multibeam sonar workflow [40].

Figure 2.2: Sample Representation of Multibeam Sonar Workflow [40]
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2.2.1 Multibeam Sonar Data

A multibeam sonar data is a record of millions of depths along with their georefer-

ences (e.g., latitude, longitude), survey vehicle’s motion sensor references (e.g., roll,

pitch, heave, heading), sound velocity profiles of the water and tidal information. All

the different types of data are captured using different sensors and stored in specific

formats. To read all the sensor data and process the data, specialized software is

required, such as Teledyne Caris HIPS and SIPS [5] and QPS Qimera [20]. Users can

collect, process, and publish multibeam sonar data using this specialized software.

2.2.2 GSF Files

One of the popular multibeam data formats is the Generic Sensor Format (GSF).

The GSF format was developed by U.S. Naval Oceanographic Office in 1994 and is

currently managed by Leidos. The GSF format is a binary format to store multibeam

sonar data. To read GSF files, gsflib [25] is used. gsflib is a C-based library that

uses functions such as gsfopen and gsfread to read GSF files. Figure 2.3 shows

the workflow of the gsflib and the data structure of the GSF file. From Figure 2.3,

the GSF data file is accessed using the gsfOpen, gsfRead, gsfWrite, and gsfClose

functions.

9



Figure 2.3: Workflow of gsflib [25]

After accessing the data file, gsflib creates a specific data structure to organize the

data into datagrams/records. The gsfSwathBathyPing record holds the information

of a ping, such as the depth and location values of all the beams in the ping and

motion sensor values of that particular ping. Table 2.1 lists all the variables found

inside the gsfSwathBathyPing record. By accessing the gsfSwathBathyPing record,

the user can retrieve the information of a ping and it’s associated variables listed in

Table 2.1.
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Table 2.1: Variables of gsfSwathBathyPing

ping time scaleFactors latitude speed

height sep number beams center beam

reserved tide corrector gps tide corrector depth corrector

heading pitch heave roll

scaleFactors depth nominal depth across track

travel time beam angle mc amplitude mr amplitude

echo width quality factor receive heave depth error

along track error quality flags beam flags signal to noise

hortizontal error sector number detection info system cleaning

doppler corr sonar vert uncert sonar horz uncert detection window

sensor id sensor data berb en incident beam adj

longitude ping flags speed along track

vertical error across track error beam angle forward course

mean abs coeff - - -

11



2.3 Multi-Index Dataframe

Dataframe is the popular data structure used to represent and analyze data [45]. A

dataframe is a tabluar organization of the data having a certain number of cells, and

each cell can store information. The information stored in the cell could be a number,

string, date, boolean or geolocations. The way to access the table is to query the

table using commands and retrieve the information. The key in the dataframe is the

index of the dataframe. All the data in the dataframe are referenced to the index of

the dataframe. A dataframe typically has the row number as the index. However,

users can also create a multi-index dataframe by transforming the dataframe, setting

specific columns as indexes and referencing all the data to indexes that are set. An

example of a comparison between a single-index and multi-index dataframe is given

in Figure 2.4. As all the soundings in the multibeam sonar data are referenced to a

particular record and a beam in the particular record, one possible way to efficiently

store the multibeam sonar data is by utilizing the multi-indexed dataframe with the

record and beam number as the indexes.
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Figure 2.4: Single-Index and Multi-Index Dataframe

2.4 Reinforcement Learning

Reinforcement learning is the branch of Artificial Intelligence (AI) where the AI

Agent tries to solve a problem on its own by learning the problem and the solution

from the rules of the problem. Reinforcement Learning has four components - Agent,

Policies, Reward and Environment. A short description of the four components is

given below.

• Agent: It is the AI-Agent, which will be solving the problem.

• Action Space: These are the possible actions an Agent can take at a partic-

ular given time.

• Reward: Based on an action the Agent takes, a reward is given based on how

well that action leads to solving the problem.
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• Environment: The Agent navigates to find a solution within the problem

boundary.

2.4.1 Outline of the Reinforcement Learning Components

The environment is the problem domain in which the AI agent will work. The en-

vironment decides the action space and observation space for the AI agent. For

example, in a game of chess, the environment is the chess game in which the AI

agent will be working. The observation space is the arrangement of the chess board,

and the action space is the possible set of moves that the AI agent can take for the

particular arrangement. The user generates a reward depending on how well the AI

agent took action to respond to the observation. In the game of chess, the reward

could be the points the AI agent earned for taking a move.

2.4.2 Workflow of the Reinforcement Learning

The user first creates an environment based on the problem statement; thereby, the

user develops the mechanism of generating the observation space and action space for

the agent to take action for the observation. Finally, the user develops the mechanism

to reward the AI-agent based on the action it performed automatically. As shown

in Figure 2.5, the agent receives the observation space state St and, based on the

observation space, takes an action At. Then, the environment generates the reward

Rt and to the agent based on the action At. After which the next observation space

St+1 is given to the agent, and the agent takes an action At+1 for which it receives

reward Rt+1. The agent tries to find the patterns of actions that gives more rewards

and thereby solve the problem.
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As an example of Reinforcement Learning, in the game of chess, an AI agent starts by

observing the current state of the chessboard, St. The agent then takes an action,

At, resulting in a reward, Rt. The process repeats with the agent observing the

updated state, St+1, and taking the next action, At+1, which yields the reward Rt+1.

Figure 2.5: Workflow of Reinforcement Learning

2.5 Concluding Remarks

This chapter discussed the necessary background for the thesis, such as multibeam

sonar data, multi-index dataframes and components of Reinforcement Learning. The

next chapter discusses the related work in areas of loading large geospatial data and

detecting outliers in hydrography data.
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Chapter 3

Related Work

3.1 Overview

In the previous chapters, the thesis problem statement was defined and the funda-

mental concepts of the thesis were described. In this chapter, the existing systems

used in the hydrography research community will be described.

3.2 Pangeo

The goal is to be able to work with a large volume of hydrography data. An ecosys-

tem that is involved in the development of systems to accommodate a large amount of

geoscience data is Pangeo. Pangeo is a community of geoscientists working collabo-

ratively to develop open-source software and infrastructure to aid big data geoscience

research [36].

The products developed by this community are software packages that can connect

to the cloud and high-performance computing environments. The software packages

that can aid large geoscience analytics in the cloud and high-performing computing

using the Pangeo architecture are called Pangeo-based software.
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The Pangeo environment was created when the amount of geo data, such as the

ocean and atmospheric data, exceeded the storage of a single computer and required

cloud and high-performance computing environments to store the data. This cre-

ated a need for an infrastructure to easily access the data in the storage, perform

high-speed transformations on the data and be user-friendly and interactive.

With these principles, the Pangeo system was developed by the community of geo-

scientists. Pangeo uses high-level data models such as Xarrays [26] and Pandas [42]

to store the values of the data. To do faster data transformations, it uses distributed

parallel computing with Dask. For the users to work interactively, it uses the Jupyter

[39] environment. The workflow of the Pangeo system is given in Figure 3.1

Figure 3.1: Workflow of Pangeo System [19]
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Pangeo uses Python as its primary programming language to build its packages. The

developers of Pangeo take geoscience data, modify the data to the data models such

as Xarrays and use NumPy arrays alongside Dask to perform distributed parallel

computing of the data. The packages in the environment store the data in popular

big data formats such as HDF [11] and Zarr [27]. The next sections describes the

Xarray and Zarr formats in detail. Xarray does not have tight integration with

modern data science libraries. Although a very few attempts like sklearn-xarray [22]

have been developed, it is difficult to develop machine learning and deep learning

models using Xarray. Therefore Xarray is a popular data structure to load geoscience

data but a less favourable data structure to be used along with data science libraries.

Due to this, the thesis focuses on maintaining data in the form of a dataframe rather

than the Xarray.

3.2.1 Xarray

Among the most popular data structures in Python language are the NumPy [37] ar-

rays. The NumPy arrays are single-dimensional data structures to hold values of the

data. The NumPy arrays can also be stacked upon each other to create multidimen-

sional arrays. An example of a multidimensional array is shown in Figure 3.2. The

sample of a multidimensional array has two dimensions to refer to and access a value.
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Figure 3.2: Sample of a Multidimensional Array

Figure 3.3: Naming Dimension using Xarrays
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However, it becomes difficult to remember each value’s position and access it. To aid

this process of accessing the data easily in large multidimensional arrays, the users

can use the Xarray package [26] to name the dimensions of the multidimensional ar-

rays. This is represented in Figure 3.3. Also, the users can change the default style

of referencing the arrays to their custom needs using the Xarrays coords parameter.

It is shown in Figure 3.4.

Figure 3.4: Xarray Coords

Once the user creates a multidimensional array, the user can stack the multidimen-

sional array on top of each other and create an Xarray dataset [26]. Later, for

accessing a value in the Xarray dataset, the user references the coords and dimen-
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sions. Since the goal of the Xarray is to aid large geoscience data, the geoscience

data can be easily created into a multidimensional array using the Xarray. For subse-

quent transformations, the chunks of the multidimensional array can be accessed and

processed in distributed computing applications using Dask systems. Presently, Xar-

rays can load and store the data of netCDF [16], Zarr and NumPy binary format files.

3.2.2 Zarr

Zarr is a storage format developed to store large multidimensional arrays in cloud

optimized format. Zarr [27] compresses the multidimensional arrays and stores the

arrays as chunks. The user can retrieve the chunk of multidimensional arrays required

and update the values in the chunk. The scalability to process large amounts of

multidimensional arrays is provided by Dask. In a practical scenario, the users load

the chunks of multidimensional arrays stored in Zarr format into the Xarrays dataset

and use Dask for distributed computing.

3.2.3 Kluster

Kluster [53] is a multibeam hydrographic processing software developed by the Na-

tional Oceanographic and Atmospheric Administration (NOAA) on the components

of the Pangeo environment. Kluster is one of the first approaches to have used dis-

tributed computing principles in the hydrography domain [53].

Kluster reads the hydrography data stored in Kongsberg multibeam (.all) format

and converts them into a multidimensional Xarray dataset. It uses the Zarr format

to store and retrieve the data in a chunked manner. It uses the PROJ library for geo-

referencing, VisPy [24] for visualization and Jupyter for an interactive environment.

The advantages of Kluster include referencing the data in the form of multidimen-
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sional Xarrays and extending the processing to distributed computing principles.

Kluster reads the hydrography data and creates the coords for the Xarray dataset.

It makes the beam, time and xyz as the coords for the Xarrys. Upon these coords,

the other attributes are referenced. The attributes can be referenced to all coords

or a few of the coords. The user performs transformations with the attributes using

the Dask backend and stores the Xarray in the Zarr format. A sample structure of

the Kluster is shown in Figure 3.5.

As shown in Figure 3.5, the Kluster reads multibeam sonar data and creates three

coordinates beam, time, and xyz, upon which the other data variables are referenced.

As Kluster extends from Xarray, the data variables can be broadcast to all the

coordinates or a combination of the coordinates. For example, the data variable

acrosstrack can be seen referenced to both beam and time coordinates. In contrast,

the data variable corr altitude can be seen referenced to only the time coordinate.

Along with creating coordinates and broadcasting data variables to the coordinates,

Kluster files can also contain remarks and information under the Attributes value.
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Code : print ( datase t . multibeam . raw ping )

Figure 3.5: Structure of Kluster

3.3 Outlier Detection in multibeam

There are many previous approaches proposed to identify outliers in the data. Based

on [40], it is observed that the hydrography industry is motivated to create auto-

matic tools to aid in the outlier identification process.

The authors in [40] have created a taxonomy to classify the outlier detection method.

The paper points out that there are more algorithms developed using the unsuper-

vised approach to detect the outliers and fewer algorithms developed using supervised

learning algorithms.
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The authors in [49] use a density-based method to identify outliers in multibeam

data. They use an ensemble technique of local outlier factor algorithm and density-

based spatial clustering of applications with noise (DBSCAN) algorithm to identify

spatial outliers over a long period.

The authors in [52] use a binning technique along with an image processing technique

to identify outliers. The authors first bin a region of multibeam data and classify

the bin with high density to be the inlier. The other bins are classified using the

image processing technique with respect to the inlier bin.

The authors in [30] use a distance-based approach to identify outliers. The authors

attempt to use a triangulation technique to find the inliers and outliers. The ap-

proach is first to create edges between all the points using a triangulation method,

and based on the specified threshold, the outliers are identified from the seabed.

In addition to the above-mentioned distance and density-based approaches to iden-

tify outliers, one of the most used techniques is a statistical-based approach. The

most popular and commercially used algorithm is the Combined Uncertainty and

Bathymetry Estimator, commonly called the CUBE algorithm [33].

The CUBE algorithm is used extensively in NOAA and the Canadian Hydrographic

Services [40]. The CUBE algorithm estimates the potential seabed depth values

based on an error model. The CUBE algorithm returns the confidence for its esti-

mation along with the seabed depth values. The confidence of the estimation is based

upon the three factors such as hypothesis count, hypothesis strength and hypothesis

uncertainty [41]. This makes the user understand the different estimations of the

seabed along with the confidence associated with them and makes a differentiation
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between the inlier and outlier.

In recent years, a few deep learning-based approaches have been proposed in addi-

tion to the previous statistical approach. For example, Teledyne Caris developed

a commercial software called Caris Mira AI [6] for identifying outliers using deep

learning techniques. Caris Mira AI transforms the point cloud of the sonar data

into voxels, and the voxels are sent to a Convolutional Neural Network (CNN). The

CNN identifies and flags the voxels that are noisy and sends the flagged output to

the user.

3.4 Concluding Remarks

This chapter discussed the related work currently developed in the thesis topics,

such as Kluster, CUBE algorithm and Caris Mira AI. The next chapter discusses the

proposed approach to develop a multi-index dataframe to support hydrography data

operations and transformations. It also introduces the approach to identify outliers

using a Reinforcement Learning algorithm.
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Chapter 4

Methodology

4.1 Overview

This chapter discusses the methodolgy used to solve the problem statements men-

tioned in the previous chapter. In brief, the three objectives of the thesis are listed

below.

The first two objectives are to develop a scalable dataframe system that can load

large multibeam sonar files, perform transformation operations on the data and

store the large data in convenient, lightweight formats. The third objective is to

demonstrate that by using the dataframe, the users can conveniently build AI models

for multibeam sonar data using popular AI frameworks and apply the models to

identify outliers in the data.
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4.2 OceanMappingDataframe

A popular data structure to load large geoscience data is the Xarray. An example

of using the Xarray data structure to load multibeam sonar data is Kluster [53].

Although the Xarray data structure can be used to load and transform multidi-

mensional geospatial data, the weak integration with data science libraries makes it

less effective in building machine learning, deep learning and AI models. Popular

dataframes such as Pandas support high integration with data science libraries, but

they do not scale with large volumes of data and cannot be used to load large vol-

umes of data [45].

To aid other data science and AI developments in the hydrography community, an

novel dataframe structure is needed, which can handle large volumes of multibeam

sonar data and have high integration with data science and AI libraries. This the-

sis introduces a dataframe exclusively for the needs of the hydrography community.

The OceanMappingDataframe (OMD) is built on the principles of out-of-core data

structures to handle large volumes of hydrography data and to process the data.

The proposed dataframe’s objective is to be able to load multibeam sonar data

directly into the dataframe structure, which is specifically indexed in accordance

with the workflow to perform transformations on the loaded data. These concepts

are described in upcoming sections.
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Beyond the dataframe structure and ability to store the data in modern formats, the

development of the dataframe was centered around the applications of the dataframe

in the workflow. One of the observed issues in multibeam formats was that they were

not compatible to work along with modern data science and AI libraries. Due to

this, it is difficult to apply the libraries to the data and build modern data science

models on hydrography data.

So, the OceanMappingDataframe is created to directly load multibeam sonar files in

a dataframe structure and act as an interchangeable data structure to apply modern

data science and AI libraries.

4.3 Out-of-Core Dataframes

As the first objective of OceanMappingDataframe is to able to load the multibeam

sonar data into a dataframe, it poses a challenge when the data is too large to fit

into the available main memory of the computer. The out-of-core dataframes are

used in the big data domain to accommodate larger datasets that do not fit into

the main memory of the system. They use different techniques to accommodate the

data into the main memory. A popular technique to accommodate large datasets in

the main memory uses distributed computing or multi-threading principles, where

the large data is broken down into smaller chunks, and the smaller chunks of data

are distributed to all the cores or clusters of the CPU.

Many out-of-core dataframes are being developed. To develop the proposed Ocean-

MappingDataframe, comparison between three popular out-of-core-dataframes, namely

Vaex [31], Dask [48] and MODIN [45], were studied. In the following section, a com-

parison between the out-of-core dataframes is provided.
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4.3.1 Comparison between out-of-core dataframes

The most popular out-of-core dataframe is the Dask dataframe. Dask uses dis-

tributed computing principles and distributes the data into small chunks into all

cores of the main memory or cluster of CPUs. Vaex creates a memory map of the

large dataset stored in the external hard disk or cloud storage and performs all the

processing on the created memory map object. MODIN also uses distributed com-

puting principles to distribute the data to all cores or clusters of CPUs.

As MODIN directly extends most of the APIs from Pandas [42], the popular data

science dataframe library, and is compatible with popular machine learning libraries,

the OceanMappingDataframe was extended from the MODIN dataframe structure.

In addition, an advantage that the users get by using MODIN is the reusability of

Pandas code. The user can change just one line of invoke statements of Pandas

code (import pandas as pd) to invoke MODIN (import modin.pandas as pd)

and use the existing code Pandas with MODIN. The developers of MODIN have

kept the API syntax of MODIN the same as Pandas. Figure 4.1 represents the

architecture of MODIN. MODIN developers have changed the working algebra of

MODIN to accommodate larger datasets and optimize the dataframe. Figure 4.2

illustrates the working comparison between MODIN and Pandas.
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Figure 4.1: Architecture of MODIN [3]

Figure 4.2: MODIN Vs Pandas Working Comaprison [1]
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4.4 Multi-Index

An important aspect of the dataframe is the index values of the dataframe. Any

value in the dataframe can be located using the indexes of the dataframe. Both

the column and rows of the dataframe can be identified by their index values. By

default, the dataframes are single-indexed, but the dataframes can be multi-indexed

by making a column value as the index and referencing all the values to the column

value.

As OceanMappingDataframe extends the principle of the MODIN dataframe struc-

ture, it utilizes the concepts of MODIN’s indexing principles. The indexes of a

dataframe are row and column labels. A standard single-indexed dataframe has

an array of a range of integers as row and column labels, starting from 0. Using

these numeric indexes, the specific rows and columns can be retrieved. Using this

representation, the values of the dataframe can be referenced to one row and col-

umn label. This makes it difficult to represent multi-dimensional data, where the

values of the dataframe can be referenced to more than one row and column label.

To represent multi-dimensional data, the MODIN dataframe allows the user to set

multiple row labels and represent the data as a multi-indexed dataframe. Each row

label is a one-dimensional array consisting of hashable data types such as int, float

and string. The users can set multiple column values as row labels and represent the

multi-dimensional data.

The OceanMappingDataframe, while constructing the dataframe by reading the

streams of input multibeam data, first populates the dataframe with row labels

as an array of integers starting from 0. After the dataframe is populated, it sets the

record and beam number columns as the row labels. This creates a tuple of record

and beam number values to be the row index, and with this multi-index row label,
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all the values of the dataframe are referenced. This tuple of record and beam number

values can be used to select the portion of the required data easily.

The process of setting multi-index to the row labels is shown in Figure 4.3. As shown

in Figure 4.3, the transformation from single index to multi-index shows that in the

multi-index dataframe, the depth value can be located using the tuple row label

(record, beam number). For example, row label (0,1) represents the record as 0 and

beam number as 1 and returns the depth value for the particular record and beam

number as 5.

Figure 4.3: Setting Multi-Index To OceanMappingDataframe

The OceanMappingDataframe uses multi-index principles to reference the data val-

ues in the dataframe. The multi-indexes used in the OceanMappingDataframe are

record and beam number. Record is the moment a ping of sound is released into

the sea, and a ping of sound contains a certain number of beams, which hit the

seabed and return to the sonar. The data of the multibeam sonar will have the

record number, the depth of each beam in a record and a location for each beam.

By indexing the dataframe to record and beam number, a user can easily go to a
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particular record and query for a particular beam detail. The data structure of the

OceanMappingDataframe is shown in Figure 4.4.

Figure 4.4: Data structure of OceanMappingDataframe

As seen earlier, the primary reason Kluster chose Xarray for broadcasting the multi-

beam sonar data was the ability to represent multidimensional data and to con-

veniently scale using Dask while loading a large amount of multibeam sonar data

[53]. However, since Xarray lacks tight integrations with data science and AI li-

braries, it makes it less effective to use the Xarray data structure for developing data

science and AI products for multibeam sonar data. The OceanMappingDataframe

tries to overcome the issue in the Xarray data structure without compromising the

ability to store and maintain large volumes of multidimensional data. To achieve

this, OceanMappingDataframe uses multi-index principles to represent the multi-

dimensional data with the indexes set to record and beam number and to achieve

33



scalability, OceanMappingDataframe uses MODIN as the backend. As the Ocean-

MappingDataframe still maintains the dataframe structure required by data science

and AI libraries, it is convenient for the hydrography community to represent large

volumes of multidimensional data and apply data science and AI libraries to the

data.

4.5 APIs for OceanMappingDataframe

As OceanMappingDataframe follows a dataframe structure and extends from the

MODIN dataframe, OceanMappingDataframe has a list of APIs that allows the user

to load, transform and store the multibeam sonar data. The following is the list of

APIs that have been developed for OceanMappingDataframe.

I/O Operations

1. Read GSF

omd.read gsf(file path, set index=True)

This API allows the users to read multibeam data stored in GSF files and

transform the data into an OceanMappingDataframe structure.

Parameters:

file path: str

Path to the file.

set index: boolean, default ‘True’

If set to ‘True’ returns a multi-indexed dataframe with row indices set to record

and beamNum. If set to ‘False’ returns a single-indexed dataframe.

Returns:

An OceanMappingDataframe with labelled axes.
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2. Read CSV

omd.read csv(file path, set index=True, record, beamNum)

Using this API, the users can read multibeam data stored in CSV files and

transform the data into an OceanMappingDataframe structure.

Parameters: file path: str

Path to the file.

set index: boolean, default ‘True’

If set to ‘True’ returns a multi-indexed dataframe with row indices set to record

and beamNum. If set to ‘False’ returns a single-indexed dataframe.

record: str

The column name in the CSV file that corresponds to the record feature.

beamNum: str

The column name in the CSV file that corresponds to the beam number feature

Returns:

An OceanMappingDataframe with labelled axes.

3. Read Parquet

omd.read parquet(file path,row filter,column filter)

Through this API, users can read portions or the entire multibeam data stored

in Parquet files [51] and transform it into an OceanMappingDataframe.It can

maintain the multi-index structure while loading if the data was stored using

multi-index.

Parameter:

file path: str Path to the file.

row filter: list of tuples of predicates, default =None

Returns the list of rows that matches the predicates. Example [(‘col1’ = ‘val1’)

(‘col2’ = ‘val2’)]]
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column filter: list of strings, default = None The dataframe is returned with

only the columns present in the list. Example [‘col1’,’col2’]

Returns:

An OceanMappingDataframe with labelled axes.

4. Save To Parquet

omd.save(file path, compression, partition columns)

This API allows saving the OceanMappingDataframe as partitioned Parquet

files based on the user’s partition condition.

Parameters:

file path: str

Path to the save the file.

compression: str, default=’snappy’

The compression technique to use out of {’gzip’, ’brotli’, ’snappy’ and None}

partition columns: list of strings

The columns upon which the data gets partitioned while storing.

Returns:

A Binary Parquet File

Join and Groupby Operation

1. Join

omd.join(df1,df2, on, how)

This API allows the users to join two OceanMappingDataframes based on a

condition.
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Parameters:

df1: OceanMappingDataframe (single or multi-indexed)

The left OceanMappingDataframe upon which the join operation is to be exe-

cuted.

df2: OceanMappingDataframe, MODIN or Pandas based dataframe (should

have the same or partial indices of the left OceanMappingDataframe)

The right dataframe upon which the join operation is to be executed.

on: str, default indices

The key column(s) upon which the join operation will execute.

how: str, default ‘left’

The type of join to be executed {‘left’, ‘right’, ‘outer’ and ‘inner’}.

Returns:

OceanMappingDataframe with appropriate indexes

2. GroupBy

omd.groupby(df,level)

Using this API, the users can split the data into groups based on some condi-

tions.

Parameters:

df: Multi-Indexed OceanMappingDataframe with row labels record and beam-

Num

level: str or list of string, default [‘record’,beamNum’]

The index(es) upon which the groupby function should be executed

– {‘record’,’beamNum’, [‘record’,beamNum’]}

Returns:

A GroupBy object that contains information about the groups
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Analytics and AI operation

1. Correlate

omd.correlate(df, col1, col2)

Through this API, the users can check the correlation value between two

columns in the OceanMappingDataframe.

Parameters:

df: OceanMappingDataframe (single or multi-indexed)

col1: str

The left column upon which the correlation function should take place

col2: str

The right column upon which the correlation function should take place

Returns:

A correlation score

2. Create Reinforcement

omd.create reinforcement(df, records, timesteps, save path)

This API allows the users to create a Reinforcement Learning model on selected

data.

Parameter:

df: Multi-Indexed OceanMappingDataframe with row labels record and beam-

Num

records: list of integers

The specific records upon which the Reinforcement Learning algorithm should

train. Example [100,101,180] or range(0,80)

timesteps: int, default 500000

The total number of timesteps upon which the agent should be trained.
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save path: str

The folder in which the should be saved

Returns: A Reinforcement Learning model

3. Apply Reinforcement

omd.apply reinforcement( model path, df, records)

Using this API, the users can load a pre-trained Reinforcement Learning model

and apply the model to selected data.

Parameter:

model path:str

The path to the Reinforcement Learning model

df: Multi-Indexed OceanMappingDataframe with row labels record and beam-

Num

records: list of integers

The specific records upon which the Reinforcement Learning algorithm should

be applied. Example [100,101,180] or range(0,80)

Returns:

The model prediction as a MODIN Series

4.6 Loading GSF Files

The multibeam sonar data is stored in exclusive formats such as Generic Sensor

Format (GSF) [8] and Kongsberg .all format [2]. To read these files, the user needs

specific multibeam data format readers. For this thesis, the GSF files were loaded

using the pygsf open-sourced GSF reader into the OceanMappingDataframe.
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To aid in the process of reading the native GSF files, Guardian Geomatics open-

sourced their pygsf reader [15]. The pygsf reader can take a .gsf file and output

the information as NumPy arrays [37]. As multiple sensor information is stored in

a .gsf file, the main information about the depth, motion sensor and GNSS are re-

turned under the SWATH BATHYMETRY class by the pygsf reader. By invoking

the SWATH BATHYMETRY class, the NumPy arrays of the information associated

with a record (ping of a sound) are retrieved.

In the implementation, pygsf reader and its SWATH BATHYMETRY class were used

to return the information stored in the .gsf files as NumPy arrays. The NumPy ar-

rays are collected by the OceanMappingDataframe’s read gsf method and organized

the arrays to a dataframe. The dataframe is later multi-indexed to the record and

beam number levels by the read gsf method. The workflow of the read gsf method

is shown in Figure 4.5.

Figure 4.5: Workflow of read gsf

By invoking the read gsf API call, the user can easily read a native .gsf file to a

dataframe indexed to record and beam number. A sample example of the result of

the read gsf method is given in Figure 4.6.
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Code:

import oceanmappingdataframe as omd

data = omd . r e ad g s f ( ’ sample . g s f ’ , s e t i nd ex=True )

print ( data )

Figure 4.6: An example illustrating use of read gsf

4.7 Saving to Parquet Files

Upon completing the analysis and transformations of the loaded multibeam data,

the OceanMappingDataframe can be saved in a Parquet [51] format. Parquet is a

file format designed to store complex and large data. The Parquet format organizes

the files in a column-wise manner. It uses the principles of compressing the data in

a column-wise manner.

41



4.7.1 Evaluation Process to Select Parquet Format for

OceanMappingDataframe

Before the Parquet was selected as the data storage format, popular big data storage

formats such as CSV [47], feather [7], HDF [11], and pickle [50] were selected and

were evaluated. These file formats were tested to check the storage consumption,

time taken for read/write operation and consumption of main memory during read-

/write operation.

For this experiment, one million rows were inserted into a Pandas dataframe with 15

numerical columns and 15 categorical columns. The 15 categorical columns were con-

sidered strings during the test. The Pandas dataframe was stored in CSV, feather,

Parquet, HDF and pickle formats. The data stored in different formats were again

loaded into a Pandas dataframe. From this process, the storage consumption, time

taken for read/write operation and consumption of main memory during read/write

operation were identified.

The first experiment was to identify the time taken by different formats to save and

load the Pandas dataframe. The experiment results are given in Figure 4.7, where it

was observed that the CSV takes the maximum time to perform the save and load

operations. The HDF and pickle perform better than the CSV format. In compari-

son, the Parquet and feather formats took the least amount of time to perform both

operations.
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Figure 4.7: Time taken to store and retrieve five different storage formats

The second experiment was to identify the main memory consumption by different

formats to save and load the Pandas dataframe. The results of the experiment are

given in Figure 4.8. It was observed that Parquet and feather consumed a reasonable

amount of main memory as compared to HDF and pickle. In contrast, CSV consumed

the least amount of main memory while performing both operations.
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Figure 4.8: Memory consumption comparison for different formats

The third experiment was to identify the storage consumption used by different for-

mats while saving the Pandas dataframe. The results of the experiment are given

in Figure 4.9. From the results, it was observed that the CSV consumed the maxi-

mum storage, followed by HDF and pickle. Parquet and feather consumed the least

amount of storage space.
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Figure 4.9: Storage comparison for different formats

After conducting the experiments, the main parameters focused on were the storage

consumption and time consumption to perform read/write operations by the selected

formats. The CSV format consumes the maximum storage and time consumption

compared to the other formats. Whereas trying to store the data in HDF and pickle

format gives a marginal reduction in storage and time consumption compared to

CSV format, they still consume a lot of storage and time to perform read/write op-

erations compared to feather and Parquet.

From these experiments, it was obvious to eliminate CSV, HDF and pickle. Another

experiment was conducted to understand the performance of feather and Parquet

more clearly. In this experiment, spatial values were added to the data. For this test

the GeoPandas dataframe [38] was used. GeoPandas is a Pandas based library to

accommodate spatial objects such as points, lines and polygons in the dataframe.
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In the second experiment, one million rows were inserted into a GeoPandas dataframe

with 15 numerical columns, 15 categorical columns and one spatial column that con-

sisted of points. Similar to the previous experiment, 15 categorical columns were

considered string objects. First, the GeoPandas dataframe was stored in feather

and Parquet formats. The data stored in both formats were again loaded into a

GeoPandas dataframe. From this test, the storage consumption, time taken for

read/write operation and consumption of main memory during the read/write oper-

ation of feather and Parquet were identified.

For the experiment, all the available compression techniques of feather and Parquet

were considered. The results of the experiments are given in Table 4.1. It was

observed that both the formats consumed comparable time consumption to perform

both the save and load operations. Parquet consumed lesser storage space than

feather in all the compression techniques and has been highlighted in the table.
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Table 4.1: Comparisons between Parquet and Feather

Save Load

Time(s)

Memory

Consumption

(MB)

Size(MB) Time(s)

Memory

Consumption

(MB)

Feather No

Compression
35.43 636.00 704.00 15.88 1157.75

Feather lz4

Compression
33.43 753.02 232.00 15.68 1040.95

Feather zstd

Compression
34.00 660.32 174.50 15.97 987.48

Parquet No

Compression
37.43 625.46 149.50 14.17 1097.85

Parquet Snappy

Compression
37.68 644.07 131.50 14.60 468.84

Parquet Gzip

Compression
45.77 645.31 121.50 17.17 539.35

Parquet Brotli

Compression
40.57 645.01 120.10 18.65 559.68

From this experiment, it was identified that Parquet performed better than feather

when spatial objects were involved. Since multibeam sonar data also consists of

spatial objects, Parquet was more suitable as a storage format for OceanMapping-

Dataframe.
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In addition to storing the multibeam sonar data in Parquet format, OceanMapping-

dataframe allows users to partition the data into files using the column value. By

partitioning the data, a user can retrieve just the portions of data they need, rather

than the entire dataset. The partitioning of the files is extended from the Parquet

storage format system. Parquet allows the user to specify the column upon which

the partitioning should occur. While using the OceanMappingDataframe, the save

method can be used to save the dataframe in Parquet files and specify the column

upon which the partition should take place by mentioning the list of column names in

the partition columns parameter. An example Python script of the the save method

is given below.

Code:

import oceanmappingdataframe as omd

omd.save(data, ’gsf data api test set index.parquet’, partition columns

= [’beamNum’])

4.8 Reading Parquet Files

After storing the hydrography data in Parquet format, users can use the OceanMap-

pingDataframe to read the files into the dataframe. As mentioned earlier, one of

the key aspects of OceanMappingDataframe is chunk-based retrieval. As the data

volume is expected to be large, a user can specify the required chunk of data, and the

OceanMappingDataframe with MODIN’s back-end can fetch the required portion of

data from Parquet partitions in a distributed manner. Also, if the data is stored in

a multi-index structure, the OceanMappingDataframe can maintain the same struc-

ture while loading the data again.
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OceanMappingDataframe offers two levels of filtering; the user can filter the data

by row and column. To filter the data, the user should specify the conditions in a

tuple format and pass the list of tuples as parameters to the read parquet() API

of the OceanMappingDataframe. An example of read parquet is shown in Figure

4.10 along with the Python scripts.

Code:

import oceanmappingdataframe as omd

dataset = omd.read parquet(’gsf data api test set index.parquet’,

row filter=[(’beamNum’, ’=’ ,256)]) print(dataset)

Figure 4.10: Sample example of read parquet method
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4.9 Reinforcement Learning

In the previous sections, the data structure of OceanMappingDataframe was dis-

cussed. The OceanMappingDataframe’s purpose, in addition to loading large amounts

of hydrography data, was to bridge the developments of artificial intelligence (AI)

into the world of hydrography. As mentioned earlier, the main barrier to developing

the AI models and products for hydrography data was the incompatibility of the

data format with the AI development frameworks.

To add further, popular deep learning frameworks such as Tensorflow [29], Keras

[34] and Pytorch [43] accept images, audio and text formats and convert them into

NumPy arrays to send to deep neural network architectures for training deep learning

models. However, they cannot directly accept hydrography data as the AI develop-

ment frameworks cannot parse it and convert it into the format they can process.

By creating the OceanMappingDataframe, an intermediate data structure is created

that can parse the hydrography data and hold the data in a structure that can be

accepted by the AI development framework. This stage is achieved because Ocean-

MappingDataframe uses a MODIN based backend and stores all the information as

MODIN objects.

Since MODIN supports APIs similar to Pandas dataframe and all the popular AI

frameworks accept Pandas framework. By processing the hydrography data in

OceanMappingDataframe structure, the user can connect to all the popular data

science libraries such as sklearn [44] and deep learning frameworks like Tensorflow,

Keras and Pytorch.
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By using the OceanMappingDataframe, the users can develop their models in any

popular Python environments such as Jupyter Notebook [39], and Google Colab [10].

Moreover, users can leverage cloud-based environments such as AWS [4] and Google

Cloud Platform [9] for developing the AI models using OceanMappingDataframe.

The next section explains how to use OceanMappingDataframe to solve a hydrogra-

phy problem with Reinforcement Learning.

4.9.1 Outlier Identification Problem

As discussed earlier in the thesis, an important step in the hydrography workflow is

outlier detection in multibeam data. Since echo sounding is used to map the seabed,

and due to the nature of the sound and environment, the sonar sometimes captures

false return signals from the seabed. As the hydrography community usually spends

2× more of their working hours cleaning the files manually than acquiring the data

[40], it creates a bottleneck for delivering the final results.

As mentioned in the related work sections, various attempts were developed to use

automation and filtering techniques to identify outliers in the multibeam data. How-

ever, only a few approaches have used AI techniques such as, deep learning to identify

outliers in multibeam data. In this thesis, a demonstration shows how to use the pro-

posed OceanMappingDataframe to build a Reinforcement Learning-based approach

to solve the outlier detection problem in multibeam data. The demonstration of the

tight integration of the proposed OceanMappingDataframe and AI libraries provides

a basis for further research in hydrography using AI and data science. In this thesis,

the Reinforcement Learning approach is developed for one of the problem statements

in hydrography, but by using the proposed OceanMappingDataframe, the users can

build data science and AI models for the other problem statements.
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4.9.2 Swath Editor

The swath editor [21] is one of the primary ways the hydrography community used

to clean the multibeam data. The swath editor removes the georeferencing prop-

erties of the depth soundings. The user can choose a certain number of records of

the multibeam data, and the swath editor plots the depth against the beam number

for the selected amount of data. The user can then flag the outliers present in the

selected region of the data.

By plotting the depths against the beam number, the main advantage the swath

editor gives the user is to see the feature of the seabed from the behind view, as the

user cannot see any features from the top view. An example of the top view and

behind view of the same seabed feature is shown in Figure 4.11 using the QPS swath

editor.

Figure 4.11: QPS Swath Editor top view and behind view [21]
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When seeing the data from behind view, the user can easily identify outliers and the

seabed from the feature. With this view, the users keep navigating to all the parts

of the data to identify the outliers from the seabed.

This research tries to develop a Reinforcement Learning approach that can take the

behind view of the swath editor and identify outliers present in the data.

4.9.3 Designing of the Reinforcement Learning

As mentioned in the previous chapter, the Reinforcement Learning environment pro-

vides three components - observation space, action space and rewards for designing

the agent to train.

One of the libraries that provides a framework to create a Reinforcement Learning

environment is OpenAI [32]. OpenAI provides gym spaces where the user can cre-

ate the environment for making the agent take steps and get rewards based on its

actions. OpenAI was initially developed for video games such as Atari and board

games. OpenAI made all the game environments and released the environment to

the user where the user can test their Reinforcement Learning agent. However, with

the growing need to develop environments for purposes other than games, OpenAI

released a framework where the users can develop their environments for their own

needs.

This research has developed a Reinforcement Learning environment that can take

a swath editor view of the multibeam data, make the agent identify the outliers in

the data, and generate a reward for the agent based upon its identification. In the

further coming sections, the design of the environment is described.
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The outline given by OpenAI for designing the custom environment is that the

environment should be a single method that invokes the gym.spaces library. The

method should consist of the following functions within it - init(), step() and

reset(). The parameters and functionalities of each function are given below.

• init() - The init method is the initialization function of the environment.

The user sets two variables within this function - observation space and ac-

tion space. The observation space defines the shape of the observation the

agent sees at a particular time, and the action space defines the set of actions

the agent can perform.

• step()- The step function is to make the agent take steps and generate rewards.

The step method takes a parameter called to action and returns four parameters

named observation, reward, done and info.

– action - The action parameter stores the value of the set of actions the

agent has taken by seeing an observation.

– observation - The observation parameter stores the value of the observa-

tion for the agent to take action upon.

– reward - The value of the reward generated for the particular action on a

particular observation is stored.

– done - This is a boolean parameter which is set to True when the agent

has completed the task.

• reset() - This method is called the first time to create the first observation

for the agent. The agent observes and generates the set of actions that are

stored in the action variable, which is passed to step().
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In the following section, the design of each method and the workflow within the

environment are discussed.

The first step in the workflow is creating the observation for the agent. From the

thesis point of view, the observation would be the depth of soundings the agent is

observing. The depth soundings are arranged similarly to achieve the swath editor

behind view. To achieve the view, OceanMappingDataframe is used, which loads

the hydrography data into the dataframe. Using the multi-index feature of the

dataframe, the user can navigate and select a certain number of records.

From the selected number of records, a pivot table having the records as the columns,

beam number as the rows and depth as the values is created. This pivot table is

called the depth table.

When the depth table is plotted, the user can see the hydrography data from the be-

hind view of the swath editor. Each row in the depth table corresponds to the depth

values collected by a beam for a certain number of records. A sample-generated

depth table is shown in Figure 4.12 for data from 80 records and 432 beams. The

view achieved by plotting the depth table is given in Figure 4.13, where green repre-

sents to outliers and blue represents inliers. To plot the depth table Matplotlib [14]

package was used.
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Figure 4.12: An example of depth table

Figure 4.13: View of the Depth Table
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After the view for the selected number of records is created, the init(), step(),

and reset() functions are implemented. To implement the functions, and to demon-

strate that OceanMappingDataframe can work seamlessly with popular AI frame-

works, the thesis uses the stable-baselines3 [28] library. The stable-baselines3 is a

popular PyTorch-based Reinforcement Learning library used for defining the vari-

ables inside the init(), step(), and reset() functions and for invoking the Re-

inforcement Learning agent that can work seamlessly with the functions inside the

environment.

The init() function is first implemented. To implement the init() function,

observation space is defined to be a one-dimensional array having i number of

values. The integer i is the number of records the user has selected for the agent to

train. The observation space is filled with the depth soundings of a single beam

number from the depth table at a time. The action space is defined as a one-

dimensional boolean list having i values.

After defining the values in the init(), the reset() function is implemented. In

this function, the first row of the depth table is made as a one-dimensional array and

returned as the first observation to the step() function.

observation0 = [d00, d01, d02, ..., d0i]

Based on the observation0, the agent takes the first action, action0, to identify which

depths are outliers and inliers from the observation0 list. If it identifies the depth as

an outlier, it flags it as 1, and if it identifies the depth as an inlier, it flags as 0. So,

the agent, upon receiving the observation array, will return the action array, which

would be action0 = [a00,a01,a02,. . . ,a0i].

57



This action array is passed inside the step() function to generate a reward based on

correctly identifying the soundings as inliers and outliers. To generate the reward, a

status flag table similar to the depth table is created using the status flag variable

from the OceanMappingDataframe. In Figure 4.14, the status flag table represents

the flags assigned manually for each sounding present in the depth table. Flag 0

represents the sounding to be an inlier, and flag 1 represents the sounding to be an

outlier.

Figure 4.14: Status Flag Table

Inside step(), the first row of the status flag is accessed to generate the status flag

array. The status flag0 = [s00,s01,s02,. . . ,s0i]. The reward function takes in the

action0 and status flag0 array and performs an element-wise comparison to identify

how many flags the agent gave match with the flags given manually. The number of
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flags that match is given as a reward to the agent.

After generating the reward for the first beam number inside the step() function,

the second beam number’s depth is given from the depth table as observation1 =

d10,d11,d12,. . . ,d1i] and the agent gives the flag array as action1 = [a10,a11,a12,. . . ,a1i].

The reward for the second beam is generated based on the action and status flag

array. This process continues until the agent covers all the beams. Upon completion,

the done variable in the step() function is set to True, and the environment returns

the control to the main function. Using the popular Reinforcement Learning library,

stable-baselines3 [28], the agent is made to train again from the first beam for a

specified number of times. The control flow of the proposed Reinforcement Learning

is shown in 4.15.

As shown in Figure 4.15, a GSF or a CSV file is loaded into an OceanMapping-

Dataframe using the read gsf() or read csv() API. From the OceanMapping-

Dataframe, the user selects i records. For the selected i records, using the pivot()

method, the depth table and corresponding status flag are created. Then, by iter-

ating through the beam number in the depth table, an array of depth values for a

particular iteration is passed as observation to the Reinforcement Learning agent.

The agent, upon observing the array of depth values, predicts the inlier and outlier

flags for each depth. Finally, the array of predicted flags is compared with the man-

ually annotated status flag array, and a reward is generated for the agent for that

particular iteration.
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Figure 4.15: Control Flow of Reinforcement Learning
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In this Reinforcement Learning process, the objective is to observe if an agent can

learn to flag the soundings by observing the collection of depth values from a beam.

The main idea is that when the data is flagged manually, the soundings that are

away from the majority of the soundings are considered an outlier. This research

aims to observe if the Reinforcement Learning agent can identify the same pattern

on its own and learn to identify the outlier values from the majority values in a list

of given depths for a beam. So in the next chapter, discusses the performance of the

Reinforcement Learning agent and test if it can learn progressively to identify the

outliers.

4.10 Concluding Remarks

In this chapter, the proposed approach and contributions were discussed. The pro-

posed OceanMappingDataframe components was explained along with the dataframe’s

structure and API calls. The design of the Reinforcement Learning strategy to iden-

tify outliers in the multibeam data was also discussed. The next chapter will discuss

the results and evaluation of the proposed system.
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Chapter 5

Experimental Evaluation

5.1 Overview

This chapter explains the experimental evaluation process conducted to test the

proposed OceanMappingDataframe along with the demonstration of the Reinforce-

ment Learning algorithm. The evaluation and benchmarking of the OceanMapping-

Dataframe is first presented and later the demonstration and performance of the

developed Reinforcement Learning algorithm is explained.

5.2 Experiment Setup

The experiments were conducted in a dedicated Google Colab environment with 2

Intel(R) Xeon(R) vCPUs @ 2.20GHz. The system had 12 GB RAM and 107 GB

disk space.
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5.3 Dataset Description

To benchmark the OceanMappingDataframe, three different GSF file sizes - 100 MB,

300 MB, and 500 MB were used from the Ocean Mapping Group datasets. The data

were collected during the 2015 Shallow Surveys using the Teledyne Reson SeaBat

7125 Multibeam Echosounder. The number of ping records and number of rows after

processing through the OceanMappingDataframe is shown in Table 5.1. All three

dataframes had 14 columns - record, beamNum, time, roll, pitch, heave, lat, lon,

depths, across track, along track, travel time, quality factor, and beam flags.

Table 5.1: Dataset description for OceanMappingDataframe

Size Number of Ping Records Number of Rows

100 MB 3733 1,906,176

300 MB 11169 5,718,528

500 MB 18615 9,530,880

To benchmark the Reinforcement Learning, five manually annotated datasets from

a multibeam survey were considered. This data also belongs to the Ocean Mapping

Group and are different from the above-mentioned GSF datasets. The number of

records that were considered from each dataset is given in Table 5.2. The number of

records considered is the standard window size used for manually identifying outliers.
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Table 5.2: Number of Records Considered for each Dataset

Dataset Number of Ping Records

Dataset1 50

Dataset2 50

Dataset3 60

Dataset4 60

Dataset5 80

5.4 Evaluation

5.4.1 OceanMappingDataframe Vs Pandas

The performance of loading GSF files into a Pandas dataframe and OceanMapping-

Dataframe is first evaluated. This experiment is conducted to observe the scala-

bility of OceanMappingDataframe over Pandas dataframe. The same GSF reader

and read gsf() as explained in section 4.6, the API was used to load the Pandas

dataframe and OceanMappingDataframe. The results of the experiment are given

in Table 5.3 and Figure 5.1.

OceanMappingDataframe performed 1.7× faster than Pandas to create 5.7 Million

rows of the dataframe and 1.3× faster to create 9.5 Million rows of the dataframe.

As OceanMappingDataframe is using MODIN as its backend, it uses distributed

computing principle to utilize all the available cores of the CPU to process the op-

64



eration faster than Pandas, which only uses one core of the CPU. Also, as MODIN

provides seamless distribution of the computation to a cluster of CPUs thereby the

performance of the computation can scale if the users add more cores or CPUs.

The read gsf() API heavily uses the concat() method to keep concatenating the

NumPy arrays returned from the GSF reader into a dataframe by utilizing MODIN’s

pd.concat() method. This approach means the OceanMappingDataframe can con-

catenate the dataframes faster than the Pandas dataframe by distributing the com-

putation to all the available CPU cores.

Table 5.3: Comparison of times (in seconds) to load hydrographic multibeam
datasets into a Python dataframe

Time Consumption(s)

Size(MB) Pandas OceanMappingDataframe

100 150.12 139.32

300 1527.15 903.56

500 3527.19 2794.46
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Figure 5.1: Time to load GSF Files in OceanMappingDataframe vs Pandas

5.4.2 Comparison between Multi-Index and Single Index

OceanMappingDataframe

As OceanMappingDataframe uses multi-index to reference the objects present in the

dataframe, the time taken to create a multi-indexed and a single-indexed OceanMap-

pingDataframe was evaluated. To test this using read gsf() API, the set index

parameter was initialized to False to obtain the single-indexed dataframe. To obtain

the multi-indexed dataframe, the set index parameter was initialized to True. In

Table 5.4, the results of the experiments are shown.
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Table 5.4: Time comparison (in seconds) for reading Single-Index and Multi-Index
OceanMappingDataframe

Time Consumption(s)

Size(MB) Single-Index Multi-Index

100 139.32 212.42

300 903.56 1073.07

500 2794.46 3174.94

It can be observed that it takes 0.84× and 0.88× longer to create 5.7 Million rows and

9.5 Million rows of Multi-indexed dataframe than creating respective Single-Indexed

dataframe.

5.4.3 Saving to Parquet Format

After the OceanMappingDataframe is created, the users can save the data in the Par-

quet format. To test this process, both the multi-indexed and single-indexed Ocean-

MappingDataframe were saved using the save() API of OceanMappingDataframe.

The time it takes to save both versions of the OceanMappingDataframe and the

storage they occupy were noted. For this test, partition columns were not set. Table

5.5 represents the results to save the dataframe to Parquet format using single-index

and multi-index.
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Table 5.5: Time to save (in seconds) to Parquet format using Single-Index and
Multi-Index

Single-Index Multi-Index

Size(MB)
Time

Consumption(s)
Parquet

Size(MB)

Time

Consumption(s)
Parquet

Size(MB)

100 81.67 145 74.12 144

300 216.753 435 292.581 431

500 710.42 725 714.65 719

It can be observed that as the data grows from 5.7 Million rows to 9.5 Million rows,

the time it takes to store the Parquet increases by three times, whereas the storage

size increases by 1.8×. Also, it is observed that there is a tradeoff between storing

the multi-index dataframe as Parquet. Multi-indexed Parquet reduces the storage

consumption, but the process of storing the multi-indexed dataframe consumes ad-

ditional time.

5.4.4 Loading Parquet Files

Once the user saves the hydrography data in Parquet format, the user can use the

read parquet() API to read the Parquet files to an OceanMappingDataframe.

For this experiment, both the multi-indexed and single-indexed Parquet formats were

retrieved. The time it takes to read both versions of the Parquet files to OceanMap-

pingDataframe were observed. Table 5.6 shows the results of these experiments.
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Table 5.6: Results of Loading Parquet Files

Time Consumption(s)

Size(MB) Single-Index Multi-Index

100 11.59 11.22

300 32.12 35.52

500 66.64 69.23

It is observed that the Parquet reader could parse all the datasets in under a minute

by storing the files in Parquet format. Moreover, there was no significant time spent

reading multi-indexed dataframe over single-indexed dataframe.

5.4.5 Select Function

The select operation is one of the primary and frequently used operations in dataframe.

Often the users are required to select a portion of the data based on a condition. By

principle, a multi-indexed dataframe returns the result of a select operation faster

than a single-indexed dataframe. The multi-index dataframe performs faster be-

cause the cursor of the dataframe can easily retrieve the required index positions in

the multi-index dataframe compared to performing an exhaustive search of a single-

indexed dataframe to return the results that match the user’s condition.

As OceanMappingDataframe uses a multi-index principle with row labels as record

and beam number, an experiment was conducted to identify the performance of the

select operation on the multi-index dataframe. To conduct this experiment, a se-

lect operation with a condition was chosen, and the operation was executed in both

single-indexed and multi-indexed dataframe. To test this, the read gsf() API was

used, and the set index parameter was initialized to False to obtain the single-
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indexed dataframe. On the other hand, to obtain the multi-indexed dataframe, the

set index parameter was initialized to True.

The select query that was executed in both the dataframes was to identify and re-

trieve the beam numbers ranging from 0 to 255 from all the ping records. Each ping

record has 512 beams, and the dataframe is queried to retrieve one-half of the entire

dataframe. The statements used to run the query are as follows:

For Single Index Dataframe

data . l o c [ data [ ”beamNum” ] . i s i n ( range ( 0 , 2 5 6 ) ) ]

For Multi-Index Dataframe

data . i l o c [ data . index . g e t l e v e l v a l u e s ( 1 ) . i s i n ( range ( 0 , 2 5 6 ) ) ]

The results of the experiment are given in Table 5.7. The results show that it takes

twice as long to search and return the matching beam numbers in a single-indexed

dataframe compared to the multi-indexed dataframe. The multi-indexed dataframe

can retrieve the data matching the beam numbers faster because the multi-indexed

dataframe holds the record and beam number as indexes, and it is easier for the

cursor to locate the range of matching beam numbers from the index value. In

a single-indexed dataframe, the cursor must perform an exhaustive search of the

beamNum column to identify the matching beam numbers.
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Table 5.7: Comparison of the time (in seconds) to select a subset of half a
dataframe using a single index and a multi-index.

Time Consumption(s)

Size(MB) Single-Index Multi-Index

100 1.78 0.84

300 2.44 1.23

500 2.539 1.447

5.4.6 Pivot Function

The OcanMappingDataframe was tested with other operations besides I/O opera-

tions. One of the main dataframe operations is the pivot operation. Also, to create

the inputs for the proposed Reinforcement Learning algorithm, the pivot function

is heavily used to create the depth table and status table. To test this operation,

1k, 3k, and 5k ping records were taken, creating OceanMappingDataframes of 512K,

1.53 Million and 2.52 Million rows, respectively. On these dataframes, the pivot

operation is applied on record, beamNum and depths columns to generate a pivot

table where the record is the column axis, beamNum is the row axis, and the table

values are depths. The results of the experiments are shown in Table 5.8.
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Table 5.8: Time (in seconds) to perform pivot operations on three different
OceanMappingDataframe sizes.

Ping Records Number of Rows Time Consumption(s)

1k 512,000 59.70

3k 1,536,000 219.02

5k 2,560,000 368.91

From the results, it is observed that as the data volume grew by three times, the

time consumption to create the pivot table was 3.7×. However, as the data volume

grew from 3 to 5×, the time consumption to create the pivot table was only 1.9×.

Here it is observed that the OceanMappingDataframe can scale and perform the

pivot operation as the data volume grows.

5.4.7 Reinforcement Learning

As mentioned in the previous chapter, to showcase the application of the OceanMap-

pingDataframe, a Reinforcement Learning strategy is developed to identify outliers

in the multibeam sonar. The Reinforcement Learning algorithm was tested on five

datasets, each of which consisted of manually annotated flags of inliers and outliers.

Then, the data was passed to the Reinforcement Learning algorithm, as mentioned

in chapter 4.

To develop the Reinforcement Learning algorithm, the stable-baselines3 [23] library

was used. The stable-baselines3 offers various Reinforcement Learning algorithms.

The selection of the appropriate algorithm depends upon the type of observation
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and action space. The proposed demonstration uses a discrete observation space

and multi-binary action space. Thereby the popular and effective algorithms that

can accomdate discrete observation space and multi-binary action space are Proxi-

mal Policy Optimization (PPO) and Advantage-Actor Critic (A2C) algorithms [23].

This thesis uses the PPO algorithm to train and test the agent on all the datasets.

Three learning scenarios were fixed to evaluate the algorithm’s performance. First,

the algorithm was trained in 100k, 500k and 1 Million timesteps. A timestep is

an episode of complete observations and actions. The idea behind Reinforcement

Learning is that the agent keeps learning as the timesteps progress.

In this demonstration, a timestep indicates where the agent receives all the beams

and completes identifying outliers in all the beams. After completing a timestep,

the agent returns to the first beam and continues the process until the user-specified

timesteps. After each timestep, the user receives the average reward of the agent

for that particular timestep. A reward is a total number of agent flags matching the

manual flags.
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Algorithm 1: Pseudocode of the Reinforcement Learning algorithm

Input : user-specified timesteps

Output: average rewards for each timestep

1. Set current timestep = 1

2. Repeat Steps 2 through 5 until current timestep < user-specified timesteps

(a) Set total reward = 0

(b) Repeat Steps i and ii for all beams

i. Identify outliers in current beam

ii. Update total reward based on the number of matching flags

between the agent and manual flags

3. Calculate average reward for current timestep by dividing total reward by

the number of beams

4. Print average reward for current timestep

5. Increment current timestep by 1

The objective of this test is to first observe whether Reinforcement Learning can be

applied to identify outliers from hydrographic data and to benchmark the algorithm’s

average reward performance on the three different scenarios.

5.4.7.1 Performance of RL on Dataset 1

Figure 5.2 (a) shows the manually annotated Dataset 1 of Table 5.2. This dataset

consists of 50 records. The green points refer to the outlier flags, and the blue refers

to the inliers or the seabed features. The Reinforcement Learning agent was trained

on the dataset for 100k, 500k and 1 Million timesteps. The results of the average
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reward obtained after training for each timestep are shown in Table 5.9.

Table 5.9: Performance of RL on Dataset 1 Results

Time Steps Average

Reward

Accuracy

(%)

Precision

(%)

Recall (%) Time

Taken(s)

100k 29 61.57 16. 40 44.56 202.38

500k 35 72.83 18.05 28.19 968.50

1 Million 32 66.60 17.71 39.93 1907.27

From Table 5.9, it was observed that the agent could predict 29 flags of 50 records

in each beam, similar to manual flags at 100k timestep. As the agent was trained

for 500k timesteps, it could predict 35 flags of 50 records in each beam, similar to

manual flags. As the agent was trained more for 1 Million timesteps, the agent’s

performance decreased to predict correctly 32 flags of 50 records. The performance

decreases due to bias and overfitting. Avoiding bias and overfitting is a completely

independent problem in machine learning. This thesis does not solve the bias and

overfitting problem but only records the agent’s performance for different timesteps.
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The following are the criteria used to evaluate the Reinforcement Learning perfor-

mance measures.

1. True Negative (TN): Number of outliers detected as outliers.

2. False Negative (FN): Number of inliers detected as outliers.

3. True Positive (TP): Number of inliers detected as inliers.

4. False Positive (FP): Number of outliers detected as inliers.

Accuracy is defined as the total number of correct predictions and is calculated as

follows:

Accuracy =
TP + TN

TP + TN+ FP + FN

Precision is the ratio of true detection of malicious attacks over the sum of true

malicious attacks and false detection of benign data and is calculated as follows:

Precision =
TP

TP + FP

Recall is the ratio of true positives over the sum of true malicious detection and

false detection of benign data and is calculated as follows:

Recall =
TP

TP + FN

In Figures 5.2 (b) and 5.2 (c), the agent’s performance at 100k timesteps and 500k

timesteps is shown. The highlighted box in Figure 5.2 (c) show the places where the

agent’s performance has improved.

From Figure 5.2 (c), it is observed that the agent at 500k timesteps was able to

identify the seabed more accurately as compared to the agent at 100k timesteps.
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This difference in the ability to better identify is indicated in the highlighted box.

(a) Manually Annotated

(b) Result at 100K Time Step
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(c) Result at 500K Time Step

Figure 5.2: Dataset 1 Results

5.4.7.2 Performance of RL on Dataset 2

Figure 5.3 (a) shows the manually annotated Dataset 2. This dataset consists of

50 records. The green points refer to the outlier flags, and the blue refers to the

inliers or the seabed features. The Reinforcement Learning agent was trained on

the three timesteps, and the performance of the agent is given in Table 5.10. In

this dataset, the agent performance increases from identifying 30 status flags to 37

status flags out of 50 records. However, later due to bias, the performance decreased.

78



Table 5.10: Performance of RL on Dataset 2 Results

Time Steps Average

Reward

Accuracy

(%)

Precision

(%)

Recall (%) Time

Taken(s)

100k 30 60.38 25.46 49.36 212.52

500k 37 72.95 37.70 50.86 850.23

1 Million 35 65.28 31.57 60.82 1709.33

In Figures 5.3 (b) and 5.3 (c), the agent’s performance at 100k timestep and 500k

timestep is shown. The highlighted boxes in Figure 5.3 (c) show the places where

the agent’s performance has improved.

From Figure 5.3 (c), it is observed that the agent at 500k timestep was able to

identify the outlier better as compared to the agent at 100k timestep, this difference

in the ability to identify outliers is indicated in the highlighted box.
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(a) Manually Annotated

(b) Result at 100K Time Step

80



(c) Result at 500K Time Step

Figure 5.3: Dataset 2 Results

5.4.7.3 Performance of RL on Dataset 3

Figure 5.4 (a) shows the manually annotated Dataset 3. This dataset consists of 60

records. The green points refer to the outlier flags, and the blue refers to the inliers

or the seabed features. The Reinforcement Learning agent was trained on the three

timesteps, and the performance of the agent is given in Table 5.11. In this dataset,

the agent performance increases from identifying 35 flags in each beam to 43 flags

out of 60 records. However, later due to bias, the performance decreased.
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Table 5.11: Performance of RL on Dataset 3 Results

Time Steps Average

Reward

Accuracy

(%)

Precision

(%)

Recall (%) Time

Taken(s)

100k 35 59.82 19.95 50.26 206.91

500k 43 70.44 24.98 42.39 1084.20

1 Million 40 68.64 24.64 46.69 2040.36

In Figures 5.4 (b) and 5.4 (c), the agent’s performance at 100k timestep and 500k

timestep is shown. The highlighted boxes in Figure 5.4 (c) show the places where

the agent’s performance has improved.

From Figure 5.4 (c), it is observed that the agent at 500k timestep could identify

both the seabed and the outlier more accurately than the agent at 100k timestep.

This difference in the ability to identify seabed better is indicated in highlighted box

1, and the difference in the ability to identify outlier better is indicated in highlighted

box 2.
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(a) Manually Annotated

(b) Result at 100K Time Step
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(c) Result at 500K Time Step

Figure 5.4: Dataset 3 Results

5.4.7.4 Performance of RL on Dataset 4

Figure 5.5 (a) shows the manually annotated Dataset 4. This dataset consists of 60

records. The green points refer to the outlier flags, and the blue refers to the inliers

or the seabed features. The Reinforcement Learning agent was trained on the three

timesteps, and the performance of the agent is given in Table 5.12. In this dataset,

the agent performance increases from identifying 34 flags out of 60 records in each

beam to 42 flags. However, later due to bias, the performance decreased.
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Table 5.12: Performance of RL on Dataset 4 Results

Time Steps Average

Reward

Accuracy

(%)

Precision

(%)

Recall (%) Time

Taken(s)

100k 34 57.65 23.53 4832 227.05

500k 42 67.92 31.44 49.20 1110.03

1 Million 40 61.16 25.06 45.93 2103.36

In Figures 5.5 (b) and 5.5 (c), the agent’s performance at 100k timestep and 500k

timestep is shown. The highlighted boxes in Figure 5.5 (c) show the places where

the agent’s performance has improved.

Figure 5.5 (c) shows that the agent at 500k timestep was able to identify both

the seabed and the outlier more accurately than the agent at 100k timestep. This

difference in the ability to identify seabed better is indicated in highlighted box 1,

and the difference in the ability to identify outlier better is indicated in highlighted

box 2.
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(a) Manually Annotated

(b) Result at 100K Time Step
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(c) Result at 500K Time Step

Figure 5.5: Dataset 4 Results

5.4.7.5 Performance of RL on Dataset 5

Figure 5.6 (a) shows the manually annotated Dataset 5. This dataset consists of 80

records. The green points refer to the outlier flags, and the blue refers to the inliers

or the seabed features. The Reinforcement Learning agent was trained on the three

timesteps, and the performance of the agent is given in Table 5.13. In this dataset,

the agent performance increases from identifying 44 flags in each beam to 52 flags

out of 80 records. However, upon training 1 Million times, the agent does not show

any performance increase.
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Table 5.13: Performance of RL on Dataset 5 Results

Time Steps Average

Reward

Accuracy

(%)

Precision

(%)

Recall (%) Time

Taken(s)

100k 44 56.57 18.89 45.45 273.30

500k 52 65.91 23.74 43.47 1161.43

1 Million 53 67.79 22.67 36.04 2010.12

In Figures 5.6 (b) and 5.6 (c), the agent’s performance at 100k timestep and 500k

timestep is shown. The highlighted boxes in Figure 5.6 (c) show the places where

the agent’s performance has improved.

From Figure 5.6 (c), it is observed that the agent at 500k timestep could identify

the seabed more accurately than the agent at 100k timestep. This difference in the

ability to identify better is indicated in the highlighted box.
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(a) Manually Annotated

(b) Result at 100K Time Step
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(c) Result at 500K Time Step

Figure 5.6: Dataset 5 Results

From the results of all the datasets, it is demonstrated that using the OceanMap-

pingDataframe users can develop Reinforcement Learning strategies for the hydrog-

raphy data. Also, by using the OceanMappingDataframe, the users do not need

to develop the Reinforcement Learning algorithm from scratch but develop the al-

gorithm via a simple one-line API call - create reinforcement() method by in-

putting the list of records upon which the Reinforcement Learning should be trained,

the timesteps for the Reinforcement Learning and the file path to save the model.

Then, the users can apply the existing Reinforcement Learning algorithm using the

apply reinforcement() method by inputting the file path of the saved model and

the list of records upon which the Reinforcement Learning should be working.
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Based on the results of the demonstration, the Reinforcement Learning agent at 100k

timesteps generated only 50% of the same actions as manually annotated flags. But

it showed the ability to learn the problem statement and generate actions 70% of

the same actions as manually annotated flags at 500k timesteps.

Based on the demonstration and results, Reinforcement Learning has shown the

potential to solve the problem of outlier detection in multibeam sonar data. This

demonstration also created an opportunity to study Reinforcement Learning in more

depth.

5.4.8 Concluding Remarks

In this chapter, the results of the proposed approach were discussed. First, the

various I/O operations and pivot operations of the OceanMappingDataframe were

evaluated and benchmarked. Later, the test results of the developed Reinforcement

Learning algorithm to identify outliers in hydrography data were discussed.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

The hydrography community primarily uses multibeam sonar for mapping the seabed

primarily. Due to technological advancements, the data collected from the seabed

is increasing, and large volumes of multibeam data are obtained. In order to make

informed decisions using a large quantity of quality hydrographic survey data avail-

able, modern data science techniques must be employed to analyze the data. One

of the popular data structures used for representing the geoscience data is Xarray,

which uses multidimensional arrays to represent the multidimensional geoscience

data. Previous approaches attempted to use the Xarray data structure to represent

the multibeam sonar data.

The Xarray data structure has weak integration with data science and AI libraries,

so it is difficult to build data science and AI models using the Xarray data structure

directly. Dataframes such as Pandas which has tight integrations with data science

and AI libraries, but do not have the ability to load large volumes of multibeam

sonar data.
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To aid further research in the hydrography industry by using data science and AI

models, the OceanMappingDataframe, an exclusive dataframe to support multibeam

sonar data, has been developed. The developed dataframe supports loading large

volumes of multibeam sonar data and projecting the multidimensional data using

multi-index principles, thus maintaining the strengths of the Xarray data structure

and also providing tight integrations with modern data science and AI libraries. In

this thesis, the proposed dataframe system design is explained. In order to demon-

strate the tight integration of AI libraries, the outlier detection problem from the

hydrography industry was used as an example. A Reinforcement Learning algorithm

was developed using the proposed dataframe and popular AI libraries to identify

outliers in the multibeam sonar data.

6.2 Future Work

In this thesis, the OceanMappingDataframe with a backend as MODIN has been de-

veloped. During the development and testing of the proposed method, it was found

that the following components can be more optimized and tested.

1. Optimizing read gsf() - From the benchmarking test, it is observed that the

OceanMappingDataframe performs better than Pandas using the read gsf()

method. However, the OceanMappingDataframe can be optimized more if the

pygsf reader is converted to use distributed computing principles to utilize all

the cores of the CPU and use libraries that are more optimized for the MODIN

architecture.
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2. Adding support to other multibeam readers - In this thesis, the OceanMap-

pingDataframe uses pygsf reader to load GSF files, but there are other popular

multibeam data formats to support. The OceanMappingDataframe should add

support to other format readers.

3. Improving Multi-Index operation - From the benchmarking, it is observed that

MODIN consumes more time to perform the multi-indexing method. There-

fore, it needs further investigation to improve the overhead.

4. Optimizing the Parquet format - From the test, it is observed that the data is

larger than the original GSF file when saved in Parquet format. Future research

should identify a more optimized way of storing the OceanMapingDataframe

in Parquet format.

5. Developing Join Operations for MODIN - As MODIN is a newer dataframe

structure, presently, MODIN does not have an implementation of the join

operation. The join operation is directed to Pandas’ backend, which cannot use

multi-cores and distributed computing principles. So there is a need to develop

a join operation for MODIN and a distributed multi-indexed and spatial join

operation for the OceanMappingDataframe.

Also, during the development of the Reinforcement Learning algorithm to identify

outliers in the hydrography data, the following elements were observed which requires

more studies and testing.

1. Adding more variables - In the thesis, only the depth variable is used for

training the agent. In the future, many more variables can be combined with

the depth variable to identify outliers.
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2. Designing new reward functions - In this thesis, a straightforward method is

employed to evaluate the match between the manual flags and the agent’s

predictions, resulting in the generation of rewards. In the future, alternative

methods may be tested.

3. Testing with other RL algorithms - The PPO algorithm is used in the thesis

to train the agent, but in the future other algorithms can be used to build the

agent. Also, the RL performance can be tested using hyperparameter tuning

[12].
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